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Abstract of thesis entitled:

Low-complexity Codes for Distributed Storage Systems

Submitted by HOU, Hanxu

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2015

Distributed storage systems are composed by many unreliable dis-

tributed storage nodes. A data file is stored in multiple storage nodes

redundantly to provide high reliability. Erasure codes are being

increasingly employed in distributed storage systems to combat the

cost of reliably storing larger amounts of data, with optimal storage

efficiency. Regenerating codes form a class of erasure codes which

can achieve the optimal trade-off between the storage capacity and

the bandwidth needed to repair a failed node. However, one of the

critical drawbacks of existing regenerating codes in general is the

high coding and repair complexities, since the coding and repair

processes involve expensive multiplication operations in a finite

field.
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This thesis proposes a framework of linear codes with the bi-

nary parity-check code as the alphabet, named Binary Addition and

Shift Implementable Cyclic-convolutional (BASIC) codes. When

the encoding matrix is composed by the identity matrix and a

rectangular Vandermonde matrix, the proposed BASIC codes reduce

to BASIC array codes. We give a sufficient condition of Maximum-

Distance Separable (MDS) property for the BASIC array codes with

any number of parity columns. The proposed BASIC array code

provides a larger spectrum of parameters, with comparable encoding

complexity when compared with existing 2-erasure or 3-erasure

MDS array codes, such as the row diagonal parity (RDP) code with 2

parity columns and the Star code with 3 parity columns. An efficient

decoding method is presented to show that the decoding complexity

of the proposed BASIC array code is less than that of the existing

4-erasure correcting MDS array codes.

A new family of regenerating codes is constructed. The

proposed codes are called BASIC regenerating codes, which can

be regarded as a concatenation coding scheme with the outer code

being a binary parity-check code, and the inner code a regenerating

code utilizing the binary parity-check code as the alphabet. We

show that the proposed functional repair BASIC regenerating codes

ii
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can achieve the fundamental trade-off curve between the storage

and repair bandwidth asymptotically of functional repair regener-

ating codes with less computational complexity. Furthermore, we

demonstrate that some existing exact repair regenerating codes can

be modified to exact repair BASIC regenerating codes with much

less encoding, repair and decoding complexity.
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1

Table 1: Notations.

Symbol Meaning

Fq Finite field of size q

F2[z] Polynomials in variable z with coefficients in F2

Rm := F2[z]/(1 + zm) The quotient ring of polynomials with

binary coefficients modulo 1 + zm

Cm = {a(z)(1 + z) : a(z) ∈ Rm} A subset ofRm consists of polynomials in

Rmwith even number of non-zero coefficients

h(z) = 1 + z + · · ·+ zm−1 The check polynomial of Cm

F2[z]/(h(z)) The quotient ring of polynomials with

binary coefficients modulo h(z)

G Generator matrix of Cm

I Identity matrix
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Chapter 1

Introduction

Distributed storage systems usually consist of a large number

of inexpensive and individually unreliable storage nodes intercon-

nected via a large distributed network. We need to introduce

redundancy to maintain system reliability, as the system has to

tolerate different failures arising from unreliable storage nodes,

software glitches, machine reboots and maintenance operations.

Two kinds of redundancy are widely employed in commercial

distributed storage systems. The most straightforward way is

replication, in which data are duplicated and stored in multiple

storage nodes. For example, the Google File System [1] and

Hadoop Distributed File System (HDFS) [2] maintain three copies

of each data. Although storage node seems inexpensive today,

replication of the entire data is infeasible for massive scales of data.

2
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As a result, most large-scale distributed storage systems, such as

Google’s Colossus File System [3] and Facebook’s HDFS [4], are

transiting to the use of erasure codes, which provide better storage

efficiency and higher reliability.

Meanwhile, to maintain a target high reliability across time, the

system is repaired whenever a storage node fails by replacing it with

a new one. As the node failures in distributed storage systems are

the “norm rather than exceptional” [1], keeping the repair process

efficient by minimizing the amount of data that a new storage node

needs to repair the system, which is called repair bandwidth, is a

critical system design objective.

Regenerating codes (RGC), which were introduced by Dimakis

et al. in [5] based on the concept of network coding, are erasure

codes with the aim of minimizing the repair bandwidth. We

differentiate two modes of repair. The first one is called exact

repair and the second one is functional repair. In exact repair,

the content of the new node is required to be the same as in the

failed node. In functional repair, the content of the new node

needs not be the same as in the failed one, but the property that

any k nodes are sufficient in decoding the original file should be

maintained. A fundamental trade-off between the storage amount
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per node and the repair bandwidth is established in [5]. It is shown

in [6] that all points on the trade-off curve can be achieved by linear

network codes with bounded field size. The construction relies on

the arithmetic of a finite field, and as in the application of linear

network codes to a single-source multi-cast problem in general,

the underlying finite field must be sufficiently large. However,

multiplication and division in a finite field are costly to implement

in software or hardware.

In a practical distributed storage system, higher computational

complexity implies longer processing time, and larger energy con-

sumption. High computational complexity suffers from high encod-

ing, repairing and decoding time. The computational penalty cost

of encoding and decoding time has been practically demonstrated

on a testbed [7]. In this work, the authors show that in general,

encoding over F2 is approximately 8 times faster than encoding over

F256. Similarly, decoding over F2 is approximately 6 times faster

than decoding over F256 on the same testbed. The importance of

designing low-complexity RGC codes is highlighted in [8,9]. In the

literature of coding for disk arrays, the computational complexity

is reduced by replacing the arithmetic finite field with simple bit-

wise operations. For example, in [10], a maximal-distance separable
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(MDS) code with a convolutional code as alphabet is introduced by

Piret and Krol. The constructed MDS convolutional code has lower

decoding complexity, compared with Reed-Solomon block code.

In [11], Blaum and Roth proposed a construction of array codes

based on the ring of polynomials with binary coefficients modulo

1 + z + · · · + zm−1 for some prime number m. A similar approach

was considered by Xiao et al. in [12].

In this thesis, we introduce another class of linear storage

codes which enables coding and repair by XOR and bit-wise

cyclic-shifts. The new class of storage codes is called BASIC

(Binary Addition and Shift Implementable Cyclic-convolutional)

codes. The reduction on computational complexity is made possible

by replacing the base field by a ring with a cyclic structure.

A similar methodology in reducing computational complexity in

network coding problems can be found in [13–15]. In [13], field

multiplications are replaced by the operations of permuting the

symbols, and in [14, 15], field multiplications are replaced by

rotating the symbols. More generally, network codes over rings are

discussed in [16]. The contributions of this thesis are summarized

as follows:

1. BASIC codes is proposed in chapter 3 that is a new framework
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of linear codes with the binary parity-check code as the

alphabet. A necessary and sufficient condition for decodability

of BASIC codes is given the chapter.

2. In chapter 4, we consider a special case of BASIC codes with

the encoding matrix being composed by the identity matrix

and a rectangular Vandermonde matrix, the special BASIC

codes reduce to BASIC array codes. We propose a general

construction of BASIC array codes correcting up to any disk

erasures, and give a sufficient MDS condition for the proposed

BASIC array codes. The proposed BASIC array code provides

a larger spectrum of parameters, in comparison with existing

MDS array codes, such as the RDP code and the EVENODD

code.

3. A general decoding method is proposed in chapter 5 to recover

some erasures for BASIC array codes. In addition, we present

a fast decoding method using an LU factorization of the

Vandermonde matrix to recover the information erasures. By

employing the proposed fast decoding method in the decoding

process, we show that the decoding complexity of BASIC

array codes proposed in the previous chapter is lower than
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those of existing 4-erasure correcting MDS array codes, such

as the well-known Rabin-Like codes in [17] which are based

on circular permutation matrices and BBV (Blaum, Bruck and

Vardy) codes in [18] which are based on the quotient ring of

polynomials modulo 1 + z + · · ·+ zm−1.

4. In chapter 6, we give a general construction of functional

repair BASIC regenerating codes and show that the presented

functional repair BASIC regenerating codes can achieve all the

benefits of functional repair RGC asymptotically.

5. In chapter 7, we show that the existing exact repair RGC can be

modified to exact repair BASIC regenerating codes. Although

in this chapter we only give the conversion of the product-

matrix construction in [19], all the proposed exact repair RGC

in [8,19–23] can be converted to the exact repair BASIC codes.

6. The computational complexity of functional repair BASIC

codes constructed in chapter 6 and the BASIC product-matrix

RGC constructed in chapter 7 are evaluated in chapter 8.

The results show that functional repair BASIC codes have

less complexity in coding and repair processes in comparison

with functional repair RGC over a finite field in [6], and the
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coding and repair complexities of BASIC product-matrix RGC

is much less than that of the product-matrix RGC in [19].

2 End of chapter.
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Chapter 2

Background Study

2.1 Erasure Codes

Erasure codes, most prominently Reed Solomon (RS) codes,

have been increasingly embraced by distributed storage systems as

an alternative for replication. RS codes have existed for decades

and are widely used in communication and storage systems, e.g.,

OceanStore [24] and TotalRecall [25] to name a few. In 1995,

Blomer et al. presented an important performance improvement of

coding complexity to RS codes using a Cauchy distribution matrix

rather than the standard Vandermonde distribution matrix, termed

Cauchy Reed-Solomon (CRS) codes [26]. With the proliferation of

RS codes in storage applications, there has been a corresponding rise

in the exploration of novel variants of RS codes targeting different

9
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requirements of practical storage systems. Specific aspects that have

been investigated in designing such coding techniques to reduce:

1. Coding complexity, binary MDS array code that only involve

binary addition and shift in the encoding and decoding process-

es, such as EVENODD codes [27] and RDP codes [28].

2. Repair bandwidth, by applying network coding techniques that

is called regenerating codes [19, 29, 30].

3. Disk I/O cost, some explicit constructions of codes such as

Zigzag codes in [23] and Dress codes in [22] are proposed to

minimize the I/O cost.

2.2 Binary MDS Array Codes

Binary MDS array codes are employed in storage systems, such

as Redundant Arrays of Inexpensive Disks (RAID) [31], for the

purpose of enhancing data reliability. The EVENODD [27] and

RDP [28] codes are two important families of binary MDS array

codes correcting double disk failures. The EVENODD code was

extended by Blaum, Bruck and Vardy [18] for three or more parity-

check disks, with the additional assumption that the multiplicative

order of 2 mod m is equal to m − 1. The extended EVENODD
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code in [18] is termed as BBV (Blaum, Bruck and Vardy) code,

it is proved that BBV code is always MDS for three parity-check

disks, but may not be MDS for four or more party-check disks.

A necessary and sufficient condition for four parity-check disks to

be MDS is given in [18], and some scattered results for more than

four parity-check disks are provided. The STAR code extends the

EVENODD code to three parity-check disks [32], and the Triple-

Star code improves the encoding/decoding efficiency of STAR code

[33]. Based on circular permutation matrices and Reed-Solomon

(RS) code, a construction of MDS array codes tolerating three disk

failures is presented in [34]. The authors of [34] modified their

construction by replacing RS code with Rabin code, and produced a

class of Rabin-like array codes, which can tolerate four or more disk

erasures [17].

2.3 Regenerating Codes

In regenerating codes, a data file of B symbols over the finite

field F2w is encoded into nα symbols and distributed to n storage

nodes, with each node storing α symbols such that the file can be

decoded from any set of k nodes. Furthermore, upon the failure of
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a storage node, we want to repair the failed node by downloading

β symbols from each of the d surviving nodes, with the amount of

data sent to the new node being as little as possible.

It is shown in [5] that, the minimization of repair bandwidth

for functional repair is closely related to the single-source multi-

cast problem in network coding theory. After formulating the

problem using an information flow graph, a fundamental trade-off

between the amount of storage per node and the repair bandwidth is

established as follows,

B ≤
k∑
i=1

min{(d− i+ 1)β, α}. (2.1)

A storage code attains the fundamental optimal trade-off between

the amount of storage per node and the repair bandwidth in (2.1) is

termed as regenerating codes (RGC). If we fix the value of file size

B, we obtain a trade-off curve on storage α and repair bandwidth

β. The two extreme points in this trade-off are termed the minimum

storage regeneration (MSR) and minimum bandwidth regeneration

(MBR) points respectively. The MSR point corresponds to

αMSR =
B

k
, βMSR =

B

k(d− k + 1)
,

and the MBR point corresponds to

αMBR =
2dB

k(2d− k + 1)
, βMBR =

2B

k(2d− k + 1)
.
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The problem of exact repair RGC was investigated in [8, 19–

23, 35–37], all of which address either the MBR case or the MSR

case. The paper [19] presents the optimal explicit constructions of

MBR codes for all feasible values of parameters k ≤ d ≤ n − 1

and MSR codes for the parameters 2k − 2 ≤ d ≤ n − 1, using

the proposed product-matrix framework. The concept of uncoded

repair is introduced in [20, 22]. RGC with uncoded repair does not

require any arithmetic operation during the repair process; a helper

node merely reads out the symbols from the memory and sends them

to the new node. This minimizes the computational complexity of

repair. Some explicit constructions of RGC at the MBR point with

uncoded repair can be found in [8, 20–22]. It is shown in [37] that

it is not possible to construct the uncoded repair MBR codes when

d 6= n − 1 for exact repair. On the MSR point, uncoded repair

RGC for functional repair is discussed in [35, 36]. However, the

code parameters considered in [35, 36] are restricted to k = 2 and

k = n− 2.

Recently, zigzag code [23] was constructed on the MSR point

to achieve the optimal exact repair. The code parameters considered

in [23] are relaxed to k + 1 ≤ d ≤ n − 1, at a cost of a very

high level of sub-symbolization. This is because zigzag code is a
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vector-linear code, while the codes in [19, 35, 36] are scalar-linear

codes. Although the problem of determining the rate region for

exact repair RGC in general remains open, some recent results on

the fundamental limit on repair bandwidth can be found in [38, 39].

In [6], existence of linear network codes achieving all points on

the fundamental trade-off curve for functional repair RGC is shown.

The construction relies on arithmetic of a finite field, and as in the

application of linear network codes to a single-source multi-cast

problem in general, the underlying finite field must be sufficiently

large.

2 End of chapter.
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Chapter 3

BASIC Codes

In this chapter, we first propose the mathematical framework of

BASIC codes, and then give a necessary and sufficient condition for

decodability of BASIC codes.

3.1 Mathematical Framework of BASIC Codes

In this section, we will introduce the necessary algebra and

mathematical framework used for BASIC codes.

3.1.1 Binary Cyclic Code

In this subsection we review some facts on binary cyclic codes

[40, Chapters 7]. A linear code C over F2 is called a binary

cyclic code if, whenever c = (c0, c1, . . . , cm−1) is in C, then c′ =

15
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(cm−1, c0, . . . , cm−2) is also in C. The codeword c′ is obtained by

cyclically shifting the components of the codeword c one place to

the right. Let m be a positive odd number and letRm be the ring

Rm := F2[z]/(1 + zm). (3.1)

The element ofRm will be referred to as a polynomial in the sequel.

The vector (a0, a1, . . . , am−1) ∈ Fm2 is the codeword corresponding

to the polynomial
∑m−1

i=0 aiz
i. The indeterminate z represents the

cyclic-right-shift operator on the codewords. A subset of Rm is a

binary cyclic code of length m if the subset is closed under addition

and closed under multiplication by z.

In this thesis, we consider the simple parity-check code, Cm,

which consists of polynomials in Rm with an even number of non-

zero coefficients,

Cm = {a(z)(1 + z) : a(z) ∈ Rm}. (3.2)

The dimension of Cm over F2 is m− 1, and the check polynomial of

Cm is h(z) := 1 + z + · · ·+ zm−1.

3.1.2 Design Framework of BASIC Code

We define BASIC (Binary Addition and Shift Implementable

Cyclic-convolutional) code as follows.
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Definition 1. A BASIC code is an Rm-linear code with the binary

parity-check code Cm as the alphabet.

Given an odd number m and positive integers κ and ν, the

encoding of a BASIC code is mapped from F(m−1)κ
2 to Cνm, specified

by a κ × ν generator matrix G over Rm. The encoding can be

performed in two steps. Firstly, we divide the (m − 1)κ bits into

κ groups, with each group containing m − 1 bits. To each group

of bits, we append a parity-check bit and form a polynomial in

Cm. We put the resulting polynomials together and form a κ-

tuple w = (s1(z), s2(z), . . . , sκ(z)) ∈ Cκm. The codeword in the

BASIC code corresponding to the (m−1)κ input bits is obtained by

multiplying w and G.

Henceforth, we will call a polynomial in Cm a source packet or

a data packet. A component in wG will be called a coded packet. A

coded packet is thus anRm-linear combination of the κ data packets,

with elements fromRm as the coefficients.

Remarks: There is an alternate description of BASIC codes in

terms of group algebra and module. The ring Rm defined in (3.1)

is isomorphic to the group algebra F2Zm, where Zm is the cyclic

group of size m, and the ring Cm defined in (3.2) is isomorphic to a

subring of F2Zm. A BASIC code is a sub-module of the free F2Zm-
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Table 3.1: An example of storage code for four nodes.

Node 1 Node 2 Node 3 Node 4

s1,0 s2,0 s3,0 = s1,0 + s2,0 s4,0 = s1,6 + s2,0

s1,1 s2,1 s3,1 = s1,1 + s2,1 s4,1 = s1,0 + s2,1

s1,2 s2,2 s3,2 = s1,2 + s2,2 s4,2 = s1,1 + s2,2

s1,3 s2,3 s3,3 = s1,3 + s2,3 s4,3 = s1,2 + s2,3

s1,4 s2,4 s3,4 = s1,4 + s2,4 s4,4 = s1,3 + s2,4

s1,5 s2,5 s3,5 = s1,5 + s2,5 s4,5 = s1,4 + s2,5

s1,6 =
∑5

j=0 s1,j s2,6 =
∑5

j=0 s2,j s3,6 = s1,6 + s2,6 s4,6 = s1,5 + s2,6

module Cnm. A BASIC code can be regarded as a quasi-cyclic code

(See e.g. [41, 42]). Nonetheless, the quasi-cyclic codes considered

in [41, 42] are submodules of the free F2Zm-module (F2Zm)m, and

the objective is to maximize the the minimum distance as a code

of length mn over a base field. In this thesis, BASIC codes are

considered a code of length n over the alphabet Cm.

Example: Consider an example of BASIC code with param-

eters m = 7, κ = 2 and ν = 4. The two data packets are

si(z) =
∑6

j=0 si,jz
j, for i = 1, 2, and the generator matrix is

G =

1 0 1 z

0 1 1 1

 .
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The example is illustrated in Table 3.1. The bit

si,6 :=
5∑
j=0

si,j

in the last row in Table 3.1 is the parity-check bit of bits si,0, . . . , si,5,

i = 1, 2, 3, 4. We note that the redundant bits in node 3 are computed

by adding the bits stored in nodes 1 and 2, meanwhile, the redundant

bits in node 4 are computed by adding the bits in node 1 and a

cyclically shifted version of the bits in node 2.

Recall that h(z) = 1 + z + · · · + zm−1 and is the check

polynomial of Cm. By its definition, c(z)h(z) = 0 for all c(z) ∈ Cm,

a coded packet can be obtained as an Rm-linear combination of

the data packets in more than one way. We can add the check

polynomial h(z) to any entry in G without modifying the encoding

function. For example, we can pick

G =

1 0 1 z

0 1 1 z + z2 + · · ·+ zm−1

 .
as the generator matrix of the example.

We remark that the last bit si,m−1 does not need to be stored

in practical implementation. As the last bit in each node can be

obtained by summing the first m − 1 bits, we can compute the last

bit si,m−1 if necessary.
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3.1.3 Erasure Decoding

A collection of κ coded packets is said to be decodable or

information set if we can recover the source packets from these κ

coded packets. In this subsection, we give a necessary and sufficient

condition for decodability. Before that, we need to first introduce a

definition.

Definition 2. A polynomial f(z) inRm is called Cm-invertible if we

can find a polynomial f̃(z) ∈ Rm such that f(z)f̃(z) is equal to

either 1 or 1 + h(z).

For a subset I ⊆ {1, 2, . . . , ν} with |I| = κ, we let GI be the

κ× κ submatrix of G obtained by retaining the columns indexed by

I.

Theorem 1. Let I ⊆ {1, 2, . . . , ν} be an index set with cardinality

κ. The coded packets indexed by I are decodable if det(GI) is Cm-

invertible.

Proof. Let s1(z), . . . , sκ(z) be the data packets, and p1(z), . . . , pκ(z)

be the coded packets indexed by I,

(p1(z), . . . , pκ(z)) = (s1(z), . . . , sκ(z)) ·GI .

Suppose that the determinant of GI is Cm-invertible. Let δ(z)

be a polynomial in Rm such that δ(z) det(GI) is equal to 1 or 1 +
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h(z). We can recover the data packets from the coded packets by

(p1(z), . . . , pκ(z)) · adj(GI) · δ(z)

= (s1(z), . . . , sκ(z)) ·GI · adj(GI) · δ(z)

= (s1(z), . . . , sκ(z)) · det(GI) · δ(z)

= (s1(z), . . . , sκ(z)),

where adj(GI) denotes the adjoint of GI [43, p.20]. In the last step,

we have used the fact that si(z)(1+h(z)) = si(z) if si(z) ∈ Cm.

We next give a criterion for checking whether a polynomial

in the ring Rm is Cm-invertible. Let f1(z), f2(z), . . . , fL(z) be the

prime factorization of the check polynomial h(z) over F2. The

irreducible polynomials f1(z) to fL(z) are distinct as they are

divisors of 1+zm andm is an odd number. We recall that in a general

commutative ring R with identity, an element u ∈ R is called a unit

if we can find an element ũ ∈ R such that uũ is equal to the identity

element in R.

Theorem 2. Suppose that f1(z), f2(z), . . . , fL(z) are the irreducible

factors of the check polynomial h(z). Let a(z) be a polynomial in

Rm. The following are equivalents:

1. a(z) is Cm-invertible.
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2. a(z) mod h(z) is a unit in F2[z]/(h(z)).

3. a(z) mod f`(z) is a unit in F2[z]/(f`(z)) for all ` = 1, 2, . . . , L.

Proof. (1) ⇔ (2). Define f0(z) as the polynomial 1 + z. The

polynomial 1 + zm ∈ F2[z] can be factored into f0(z) and h(z).

Using the Chinese remainder theorem, it can be shown that the ring

Rm is isomorphic to the direct sum

R′m := F2[z]/(f0(z))⊕ F2[z]/(h(z)).

Indeed, the mapping φ : Rm → R′m defined by

a(z) 7→ (a(z) mod 1 + z, a(z) mod h(z)),

and the mapping φ′ : R′m → Rm defined by

(a0(z), a1(z)) 7→ h(z)a0(z) + (1 + h(z))a1(z) mod 1 + zm

are inverse of each other. Suppose a(z) mod h(z) is a unit in

F2[z]/(h(z)), i.e., there is a polynomial d(z) such that φ(a(z)d(z)) =

(a, 1), where a is either 0 or 1. Hence a(z)d(z) is equal to either

φ′((0, 1)) = 1 + h(z) or φ′((1, 1)) = 1. This proves that a(z) is

Cm-invertible.

Conversely, suppose that a(z) is Cm-invertible. There is a

polynomial ã(z) ∈ Rm such that a(z)ã(z) is equal to 1 or 1 + h(z).
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If we apply the mapping φ to a(z)ã(z), then we have φ(a(z)ã(z)) =

(a, 1), for some a ∈ F2. Therefore a(z) mod h(z) is a unit.

(2) ⇔ (3). Using the fact that h(z) can be factorized into

f1(z)f2(z) · · · fL(z), the equivalence between the second and third

conditions in the theorem can be shown by another application of

Chinese remainder theorem.

A necessary and sufficient condition for decodability is sum-

marized in the following Corollary.

Corollary 3. Consider a BASIC code with κ × ν generator matrix

G, and an index set I ⊆ {1, 2, . . . , ν} with cardinality κ. The coded

packets indexed by I is decodable if and only if det(GI) is Cm-

invertible.

Proof. We have already shown the “if” part in Theorem 1. In

the reverse direction, suppose that det(GI) is not Cm-invertible.

Using the same notation as in Theorem 2, we have det(GI) =

0 mod f`0(z) for some `0 ∈ {1, 2, . . . , L}. If we reduce the matrix

GI modulo f`0(z) entry-wise, the resulting matrix is singular as a

matrix over the finite field F2[z]/(f`0(z)). We can find a non-zero

vector ā = (ā1(z), . . . , āκ(z), with each component belonging to

F2[z]/(f`0(z)), such that āGI mod f`0(z) is the zero vector. For
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j = 1, 2, . . . , κ, choose aj(z) ∈ Cm such that

aj(z) =


āj(z) mod f`(z) for ` = `0

0 mod f`(z) for ` 6= `0.

If we take aj(z)’s as the source packets, then ν-tuple obtained by

(a1(z), a2(z), . . . , aκ(z))GI is the zero ν-tuple. The encoding map

is not injective and therefore the coded packets indexed by I are not

decodable.

Continuing the example of ν = 4, κ = 2 and m = 7, the

polynomial 1 + z7 can be factorized as a product of f0(z) = 1 + z,

f1(z) = 1 + z + z2 and f2(z) = 1 + z2 + z3. We can check that

any two coded packets are decodable. For instance, if the index set

is I = {3, 4}, the determinant det(GI) = 1 + z is not divisible by

f1(z) and f2(z). Indeed, 1 + z is Cm-invertible because

(1 + z)(z + z3 + z5) = z + z2 + · · ·+ z6 = 1 + h(z).

We can thus compute the two data packets from node 3 and node 4

according to Theorem 1.

Some remarks on implementation are in order. In software

implementation, we can implement a cyclic-shift by using a pointer.

We store the m bits consecutively in the memory, and use a pointer
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to store the beginning address of the packet. A cyclic-shift can be

done by modifying the pointer only, without modifying the packet

itself. We can also modify BASIC codes and replace bit-wise cyclic-

shift by byte-wise cyclic-shift, which is more amenable to software

implementation. In hardware implementation, a cyclic-shift can

easily be done by having the bits cyclically shifted in a shift register.

Remarks: If the parameter m is a positive even number, then

the polynomial 1 + z is a factor of the check polynomial h(z).

From the decodability condition of BASIC code in Theorem 2 and

Corollary 3, if a BASIC code is decodable, then the determinants of

all the ν × ν submatrices of the generator matrix do not have the

factor 1 + z, which is hard to satisfy in general. This is why we

choose m to be a positive odd number. Someone may try to add

more parity-check bits to formulate repeated-root cyclic code [44],

when m is a positive even number.

2 End of chapter.
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BASIC Array Codes

In this chapter, we consider BASIC array codes, a class of

BASIC codes with encoding matrix being composed by the identity

matrix and a rectangular Vandermonde matrix.

4.1 Construction of BASIC Array Codes

In this section we consider a (m − 1) × (k + r) BASIC

array code, termed C(k, r,m), where m is an odd prime and m ≥

max{k, r}. The columns are identified with the disks. Columns 0 to

k−1 are called the information columns, which store the information

bits. Columns k to k + r − 1 are called the parity columns, which

store the redundant bits.

For i = 0, 1, . . . ,m− 2 and j = 0, 1, . . . , k − 1, we let the i-th

26
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information bit in the j-th information column be denoted by si,j.

For notational convenience, we let sm−1,j be the parity-check bit

sm−1,j , s0,j + s1,j + · · ·+ sm−2,j,

associated with column j. This parity-check bit is not stored in the

array code, but is essential in encoding and decoding.

The r parity columns are computed by XOR-ing the informa-

tion bits. For i = 0, 1, . . . ,m− 2 and j = 0, 1, . . . , r− 1, let the i-th

redundant bit stored in the j-th parity column be defined as

ci,j ,
k−1∑
`=0

s〈i−j`〉m,` (4.1)

where 〈x〉m in the subscript means that we divide the integer x by m

and take the remainder. We sometimes omit the brackets “〈 〉m”

for notation simplicity. The first parity column, i.e., the column

containing the redundant bits c0,1, . . . , c0,m−2, is named as row parity

column. The other r−1 parity columns are called the diagonal parity

columns.

For j = 0, 1, . . . , r − 1, we let cp−1,j to be the parity-check bit

cp−1,j , c0,j + c1,j + · · ·+ cm−2,j,

associated to the j-th parity column. For j = 0, 1, . . . , k − 1, we
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represent the m information bits s0,j, . . . , sm−1,j by the polynomial

sj(z) , s0,j + s1,jz + · · ·+ sm−2,jz
m−2 + sm−1,jz

m−1. (4.2)

Similarly, we represent the m bits c0,j, . . . , cm−1,j by the polynomial

cj(z) , c0,j + c1,jz + · · ·+ cp−2,jz
p−2 + cp−1,jz

p−1, (4.3)

for j = 0, 1, . . . , r − 1.

The encoding can be now performed by taking the product

(s0(z), s1(z), · · · , sk−1(z)) ·G,

where G is the k × (k + r) generator matrix of BASIC array code

C(k, r,m),

G =

[
I | P

]
.

The first k columns of G form the k × k identity matrix I, and the

last r columns form a rectangular Vandermonde matrix P given by

P ,



1 1 1 · · · 1

1 z z2 · · · zr−1

1 z2 z4 · · · z2(r−1)

... ... ... . . . ...

1 zk−1 z2(k−1) · · · z(r−1)(k−1)


. (4.4)

All the arithmetic operations are performed in the ringRm.



www.manaraa.com

CHAPTER 4. BASIC ARRAY CODES 29

Table 4.1: The BASIC array code C(4, 3, 5) (k = 4, r = 3, m = 5).

Disk 4 Disk 5 Disk 6

s0,0 + s0,1 + s0,2 + s0,3 s0,0 + s4,1 + s3,2 + s2,3 s0,0 + s3,1 + s1,2 + s4,3

s1,0 + s1,1 + s1,2 + s1,3 s1,0 + s0,1 + s4,2 + s3,3 s1,0 + s4,1 + s2,2 + s0,3

s2,0 + s2,1 + s2,2 + s2,3 s2,0 + s1,1 + s0,2 + s4,3 s2,0 + s0,1 + s3,2 + s1,3

s3,0 + s3,1 + s3,2 + s3,3 s3,0 + s2,1 + s1,2 + s0,3 s3,0 + s1,1 + s4,2 + s2,3

The encoding procedure can be described as follows. Given

k(m−1) information bits, we append k parity-check bits and obtain

the k data polynomials s0(z), s1(z), · · · , sk−1(z). The r coded

polynomials can be computed by taking the product

(s0(z), s1(z), · · · , sk−1(z)) ·P.

We ignore the terms with degree m− 1 and store the coefficients of

the terms in the polynomials of degrees from 0 to m− 2.

Table 4.1 shows the three parity columns of BASIC array code

C(4, 3, 5). In Table 4.1, the terms in boldface are the parity-check

bits associated with columns 0 to 3. The coded packets in disk 4 to

disk 6 are computed by adding some cyclically shifted version of the

4 data packets. The example of Table 3.1 in Section 3.1 is in fact a

BASIC array code C(2, 2, 7).

We want to mention a very similar code of C(k, r,m), BBV
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code in [18]. BBV code is defined over arrays with dimensions (m−

1) × (m + r), with m information columns and r parity columns.

Each array column of length m− 1 in BBV is viewed as polynomial

of degree ≤ m − 2 over the finite field F2. The main difference of

the proposed BASIC array code C(k, r,m) and the BBV code in [18]

is as follows. The code in [18] is constructed based on the ring of

polynomials with binary coefficients modulo h(z) = 1 + z + · · · +

zm−1 for some prime number m, and BASIC array code C(k, r,m)

is based on the ring of polynomials with binary coefficients modulo

1 + zm. We will show in the next chapter that BASIC array code

C(k, r,m) has more efficient decoding algorithm than that of BBV

code, because of the difference.

4.2 The MDS Property

In the following section, we are going to prove that the BASIC

array code constructed in the last section satisfies the MDS property

under a mild condition. In the rest of the chapter, the prime m is

chosen such that the multiplication order of 2 in the ring 〈Zm,+, ·〉

is equal to m − 1. For this case, the ring Cm defined in (3.2) is

isomorphic to the finite field F2m−1 [40, p. 197]. By Corollary 3,
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we have that if the determinant of any k × k submatrix of the

generator matrix G is Cm-invertible, i.e., is a nonzero polynomial

in F2[z]/h(z), then the array code C(k, r,m) satisfies the MDS

property. In other words, the array code C(k, r,m) is MDS if, for

all ` = 1, 2, . . . ,min{k, r}, the determinant of each `× ` submatrix

of the matrix P, regarded as a polynomial in F2[z], is not divisible

by 1 + zm.

Theorem 4. If any k×k sub-matrix of the generator matrix G, after

reduction modulo h(z), is a non-singular matrix over F2[z]/(h(z)),

then the array codes C(k, r,m) satisfy the MDS property.

Proof. Let A be a k × k sub-matrix of the generator matrix G, and

Ā be the matrix obtained by reducing each entry of A mod h(z).

By the Chinese Remainder Theorem, Ā can be regarded as a matrix

over the finite field F2[z]/(h(z)). Since the matrix Ā is non-singular

over F2[z]/(h(z)), we can find the inverse of Ā. Let Ā−1 be the

inverse of Ā, then we can compute the inverse matrix of A over the

ringRm by using the Chinese Remainder Theorem for each entry of

Ā−1.

Let Gk be any k × k submatrix of the generator matrix G.

Therefore, we only need to show that the matrix Gk is non-singular
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over F2[z]/(h(z)). By employing the result of [18] and the above

theorem, we prove the MDS condition given in the following

theorem when r ≤ 8.

Theorem 5. Let m be a prime such that the multiplicative order of

2 mod m is equal to m− 1. We have that:

1. The array code C(k, r,m) is MDS for m ≥ 5 and r ≤ 5.

2. The array code C(k, 6,m) is MDS for m 6= 3, 5, 13.

3. The array code C(k, 7,m) is MDS for m > 13.

4. The array code C(k, 8,m) is MDS for m > 29.

Proof. The proof follows the exact steps of the proof of Theorem 2.6

in [18], by showing that any k×k submatrix Gk is non-singular over

the ring F2[z]/(h(z)). Then we can prove the results by invoking

Theorem 4.

Now we discuss the existence of BASIC array code with large

r. For this purpose, we need to prove that the matrix Gk consisting

of any ` rows of the identity matrix and any k − ` rows of the

Vandermonde matrix is non-singular over F2[z]/(h(z)). The result

is summarized in the following theorem.
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Theorem 6. Letm be a prime number such that 2 is primitive in Fm.

If the value of m− 1 is larger than

(min{k, r}−4)(kr+
(min{k, r} − 3)(min{k, r}+ 3 max{k, r}+ 7)

6
).

Then, the proposed BASIC array codes C(k, r,m) are MDS for r ≥

9 and k ≥ 5.

Proof. See Appendix A.1.

Table 4.2: The minimum value of m for k = 20 and r ranges from 9 to 14.

r 9 10 11 12 13 14

m 1283 1741 2269 2909 3547 4349

According to Theorem 4, the codes C(k, r,m) are MDS if the

determinant of any k × k sub-matrix Gk is a unit over the ring

F2[z]/(h(z)). Asm is restricted to be a prime such that 2 is primitive

in Fm, we have the ring F2[z]/(h(z)) is actually a field of size 2m−1.

Therefore, if the determinant of any k×k sub-matrix Gk is a nonzero

polynomial with degree less thanm−1, or a polynomial with degree

equal or larger than m − 1 but is not divisible by h(z), then the

codes C(k, r,m) are MDS. Apparently, the determinant of Gk is a

polynomial with degree depending on k and r. The lower bound
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of m − 1 given in Theorem 6 is a polynomial about k, r of degree

3, which is easy to satisfy and there are infinite many such prime

number m under Artin’s conjecture [45]. The minimum value of

such prime number m is summarized in Table 4.2 for k = 20 and r

ranges from 9 to 14.

We remark that if we replace the generator matrix of BASIC

array code by a k × n Vandermonde matrix, the resulting BASIC

array code can be viewed as a generalization of Reed-Solomon

code.

2 End of chapter.
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Chapter 5

Decoding Method of BASIC Array

Codes

In this chapter, I consider the decoding method to recover some

erasures. I will first present a general decoding method for BASIC

array codes when there are some erasure columns. A fast decoding

algorithm is given in the next for BASIC array codes when some

information columns fail. Then, I will evaluate the encoding and

decoding complexity for BASIC array codes C(k, r,m) with the

proposed fast decoding algorithm for the information erasures, as

well as other MDS array codes (such as RDP [28] and EVENODD

[27] of r = 2, Star [32] and Triple-Star [33] of r = 3, (BBV) [18]

and Rabin-Like [17] of r ≥ 4). Finally, I will present an efficient

decoding method for some cases of r = 4.

35
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5.1 Decoding Method Using Cramer’s Rule

Assume that the parameters m, k, r of BASIC array codes

satisfy the MDS condition in Theorem 5 or Theorem 6. Let us

consider the general case. Suppose that γ information columns

fi1, fi2, . . . , fiγ and δ parity columns fj1, fj2, . . . , fjδ erased with 0 ≤

fi1 < fi2 < . . . < fiγ ≤ k−1 and 0 ≤ fj1 < fj2 < . . . < fjδ ≤ r−1,

where k ≥ γ ≥ 0, r ≥ δ ≥ 0 and γ + δ ≤ r. Let

A := {0, 1, . . . , k − 1} \ {fi1, fi2, . . . , fiγ}

be set of the indices of the available information columns, and let

B := {0, 1, . . . , r − 1} \ {fj1 < fj2 < . . . < fjδ}

be set of the indices of the available parity columns.

We want to first recover the lost information columns by

reading k−γ information columns with indices i1, i2, . . . , ik−γ ∈ A,

and γ parity columns with indices `1, `2, . . . , `γ ∈ B, and then

recover the failure parity column by multiplying the corresponding

encoding vector and the k data polynomials.

Let p`1(z), p`2(z), . . . , p`γ(z) be the polynomials by subtracting

the chosen k − γ data polynomials si1(z), si2(z), . . . , sik−γ(z) from
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γ coded polynomials c`1(z), c`2(z), . . . , c`γ(z), i.e.,

p`h(z) = c`h(z) + zi1`hsi1(z) + zi2`hsi2(z) + . . .+ zik−γ`hsik−γ(z),

for h = 1, 2, . . . , γ. We can obtain the γ information erasures by

solving the following system of linear equations

z`1fi1 z`1fi2 · · · z`1fiγ

z`2fi1 z`2fi2 · · · z`2fiγ

... ... . . . ...

z`γfi1 z`γfi2 · · · z`γfiγ





sfi1(z)

sfi2(z)

...

sfiγ (z)


=



p`1(z)

p`2(z)

...

p`γ(z)


.

The determinant of the above matrix to the left is regarded as an

element in the ring Rm and we can find the inverse polynomial of

the determinant over the ringRm. Therefore, we can solve for the γ

failure polynomials by Cramer’s rule.

In the next section, I will first present a fast decoding algorithm

using an LU factorization of Vandermonde matrix when there are

some information failures, and then consider some special cases of

r = 4 for three information columns and one parity column erasures.

5.2 Decoding Algorithm for Information Erasures

In this section, we consider some information erasures. Let m

be a positive prime number such that m ≥ {k, r}. Before giving
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the decoding algorithm, I first introduce an LU factorization of the

Vandermonde matrix. The efficient decoding method can recover up

to min{r, k} information erasures. Alternately, this is a method of

decoding all information bits from any k − ` information columns

and ` parity columns.

5.2.1 Fast Decoding Algorithm by LU Factorization of Vander-

monde Matrix

In the following, we give a fast decoding method using an LU

factorization of the Vandermonde matrix. Expressing a matrix as a

product of a lower triangular matrixL and an upper triangular matrix

U is called an LU factorization. Let’s review some results on an LU

factorization of the Vandermonde matrix.

Given a vector a = (a0, a1, . . . , aν) with ν+ 1 components, we

define the square Vandermonde matrix

Vν = Vν(a) :=



1 a0 · · · aν0

1 a1 · · · aν1
... ... . . . ...

1 aν · · · aνν


(5.1)

with the second column equal to a. Using symmetric functions

and linear algebra, the author in [46] proved the result on an LU
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factorization of the Vandermonde matrix, and further simplified the

L matrix and U matrix into 1-banded matrices.

Theorem 7. [46] The Vandermonde matrix Vν can be factorized

into ν 1-lower banded matrices L(1)
ν , L

(2)
ν , · · · , L(ν)

ν and ν 1-upper

banded matrices U (1)
ν , U

(2)
ν , · · · , U (ν)

ν such that

Vν = L(1)
ν L(2)

ν · · ·L(ν)
ν U (ν)

ν · · ·U (2)
ν U (1)

ν , (5.2)

where the i-th row and the j-th column entry L`ν(i, j) and U `
ν(i, j) of

the banded matrix are as follows,

L`ν(i, j) =


1 if j = i, i ≤ ν − ` or i = j + 1, i ≥ ν − `+ 1,

aj − aν−` if i = j, i > ν − `,

0 otherwise,

U `
ν(i, j) =


1 if j = i,

ai−ν+` if j = i+ 1, j ≥ ν − `+ 1,

0 otherwise,

for 0 ≤ i, j ≤ ν and 1 ≤ ` ≤ ν.

For example, consider the case ν = 3, the matrix V3 can be
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factorized into three 1-lower banded matrices

L
(1)
3 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 a3 − a2


, L

(2)
3 =



1 0 0 0

0 1 0 0

0 1 a2 − a1 0

0 0 1 a3 − a1


,

L
(3)
3 =



1 0 0 0

1 a1 − a0 0 0

0 1 a2 − a0 0

0 0 1 a3 − a0


,

and three 1-upper banded matrices

U
(3)
3 =



1 a0 0 0

0 1 a1 0

0 0 1 a2

0 0 0 1


, U

(2)
3 =



1 0 0 0

0 1 a0 0

0 0 1 a1

0 0 0 1


,

U
(1)
3 =



1 0 0 0

0 1 0 0

0 0 1 a0

0 0 0 1


.

A proof of Theorem 7 can be found in [46].

Given a (ν + 1) × (ν + 1) linear system in Vandermonde

matrix form Vνx = b, where x = (x0, x1, . . . , xν)
t and b =
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(b0, b1, . . . , bν)
t is both a column vector of length ν + 1. We want to

solve the equation for x given Vν and b. We propose a fast decoding

method to solve the ν + 1 linear equations Vνx = b using the 1-

banded LU factorization of Vandermonde matrix, which is stated in

Algorithm 1.

Algorithm 1 Solving Vνx = b

Input: Column vector b and Vandermonde matrix Vν that is invertible.

1: Let y` be column vector of length ν + 1, ` = 1, 2, . . . , ν + 1. Let y1 = b.

2: for each ` = 1, 2, . . . , ν do

3: Solve the equation L(`)
ν y`+1 = y` for y`+1

4: for each ` = ν, ν − 1, . . . , 1 do

5: Solve the equation U (`)
ν y` = y`+1 for y`

Output: y1

Note that in the above Algorithm 1, we are dealing with 1-

banded triangular matrices which can be solved directly by forward

or backward substitution without using the Gaussian elimination

process. From Theorem 7, we can see that in the 1-lower banded

matrix L
(`)
ν , there are ` rows that have 2 non-zero entries (one is

1 and the other is ai − aν−` for ν − ` ≤ j ≤ ν) and the other

ν − ` + 1 rows have one non-zero entry. Therefore, computing the

values for y`+1 from L
(`)
ν y`+1 = y` takes ` multiplications and `

additions. Similarly in the 1-upper banded matrix U
(`)
ν , there are
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` rows that have 2 non-zero entries (one is 1 and the other is aj for

0 ≤ j ≤ ν−1) and the other ν−`+1 rows have one non-zero entry,

and the diagonal entry of U (`)
ν is 1. We can count that computing

the equation U
(`)
ν y` = y`+1 for y` takes ` multiplications and `

additions. Therefore, solving the ν+1 linear equations Vνx = b by

employing Algorithm 1 takes ν(ν + 1) multiplications and ν(ν + 1)

additions.

In the following, we want to evaluate the decoding complexity

of BASIC array codes, using the above Algorithm 1. We need the

following lemma about how to compute the data packet s(z) from

(1 + zb)s(z) = c(z) inRm for s(z), c(z) ∈ Cm.

Lemma 8. Given the equation (1 + zb)s(z) = c(z), where b is a

positive integer such that (b,m) = 1 and s(z), c(z) ∈ Cm, we can

represent a coefficient sm−b of s(z) as

sm−b = cb + c3b + c5b + · · ·+ c(m−2)b,

where s(z) =
∑m−1

i=0 siz
i and c(z) =

∑m−1
i=0 ciz

i.
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Proof. We can check that in the ringRm,

cb + c3b + · · ·+ c(m−2)b + sm−b

=(s0 + sb) + (s2b + s3b) + · · ·+ (s(m−3)b + s(m−2)b) + sm−b

=s0 + sb + s2b + · · ·+ s(m−2)b + s(m−1)b

=s0 + s1 + s2 + · · ·+ sm−2 + sm−1

=0.

In the equations above, the indices are taken modulo m. The second

last equality follows from the fact that `b 6= 0 mod m for (b,m) =

1 and 1 ≤ ` ≤ m− 1.

The other coefficients of s(z) can be computed recursively by

cm−b` = sm−b` + sm−b`−b

for ` = 1, 2, . . . ,m − 1. Thus, there are 3(m−1)
2 XORs involved in

the solving s(z) from (1 + zb)s(z) = c(z).

Theorem 9. In BASIC codes with ν + 1 data polynomials, let a

(ν + 1)× (ν + 1) submatrix of the generator matrix be

1 zi0 · · · zi0ν

1 zi1 · · · zi1ν

... ... . . . ...

1 ziν · · · ziνν


, (5.3)
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where i0, i1, . . . , iν are distinct positive integer numbers that are no

larger than the prime number m. If we use Algorithm 1 to decode

the linear systems with the encoding matrix in (5.3), the decoding

complexity is at most 7
4ν(ν + 1)m.

Proof. See Appendix A.2.

Note that the proposed Algorithm 1 can also be employed in

the decoding process of BBV code. In the following, we discuss two

basic operations that are involved in the decoding process of BBV

code, when we use Algorithm 1. The first one is the multiplication

za(z) and the last one is to solve a(z) from the equation (1 +

zb)a(z) = c(z), where a(z) and c(z) are two polynomials in the

ring F2[z]/h(z).

For a polynomial a(z) =
∑m−2

i=0 aiz
i in the ring F2[z]/h(z), the

multiplication za(z) takes m− 1 XORs, as we have

za(z) = a0z + a1z
2 + · · ·+ am−3z

m−2 + am−2z
m−1 mod h(z)

≡ am−2 + (a0 + am−2)z + · · ·+ (am−3 + am−2)z
m−2.

Let a(z) =
∑m−2

i=0 aiz
i and c(z) =

∑m−2
i=0 ciz

i be two polynomials

in F2[z]/h(z) such that (1 + zb)a(z) = c(z). After expanding the
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parentheses, we have

c0 = a0 + am−b + am−b−1

c1 = a1 + am−b+1 + am−b−1

...

cb−2 = ab−2 + am−2 + am−b−1

cb−1 = ab−1 + am−b−1

cb = ab + a0 + am−b−1

cb+1 = ab+1 + a1 + am−b−1

...

cm−2 = am−2 + am−b−2 + am−b−1.

Table 5.1: Number of XORs of two basic operations for C(k, r,m) and BBV code.

Basic operation C(k, r,m) BBV code

zs(z) 0 m− 1

s(z)
1+zb

3(m−1)
2

2m− 5

We can decode the polynomial a(z) by first computing ci+ci+b

for i = 0, 1, . . . ,m − 2, and then using the result of Lemma 8. The

computation of solving a(z) from the equation (1 + zb)a(z) = c(z)

in the ring F2[z]/h(z) is 2m−5 XORs. For the two basic operations



www.manaraa.com

CHAPTER 5. DECODING METHOD OF BASIC ARRAY CODES 46

zs(z) and s(z)
1+zb

, Table 5.1 summarizes the number of XORs involved

for C(k, r,m) and BBV code. By the same argument of Theorem

5.3, we can count that the decoding complexity is at most 5m−9
2 ν(ν+

1) XORs, if we use Algorithm 1 to decode the linear systems with

the encoding matrix in (5.3) over the ring F2[z]/h(z).

5.2.2 Computational Complexity

In the following, we evaluate the encoding/decoding complexi-

ties for the proposed C(k, r,m) and other existing MDS array codes,

such as RDP and EVENODD of r = 2, Star and Triple-Star of

r = 3, BBV and Rabin-Like of r ≥ 4. Here the encoding/decoding

complexities are defined as the number of XORs involved in the

encoding/decoding processes of the codes. We determine the

normalized encoding complexity as the ratio of the encoding com-

plexity to the number of information bits, and normalized decoding

complexity as the ratio of the decoding complexity to the number of

information bits.

Encoding Complexity

In the m − 1 × n array of C(k, r,m), there are k information

columns, and k − 1 XORs are required to reduce the k information
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bits per row to the row parity column. The row parity thus

requires (k − 1)(m − 1) XORs. Computing the parity-check bit

for information column 1 to k − 1 takes (k − 1)(m − 2) XORs.

Each diagonal column contains a total of m − 1 diagonal parity

bits, requiring k − 1 XORs to reduce one diagonal parity bit.

Therefore, one diagonal parity column requires (k − 1)(m − 1)

XORs. The total number of XORs required for construction r

parities are (k−1)(m−2) + ((k−1)(m−1))r, and the normalized

encoding complexity is

(k − 1)(m− 2) + ((k − 1)(m− 1))r

k(m− 1)
.

In the (m − 1) × (m + r) BBV codes, r(m − 1) redundant

bits stored in r parity columns are calculated from the m(m − 1)

information bits. The computation of computing the m − 1 bits

stored in the first parity column is (m − 1)2 XORs, and computing

them−1 redundant bits for each diagonal parity column takes (m−

1)2+m−2 XORs. Therefore, the encoding complexity of BBV code

is rm2 − rm− r −m+ 2 and the normalized encoding complexity

is
rm2 − rm− r −m+ 2

(m− 1)m
.

For the (m−1)×(k+4) Rabin-Like codes, the encoding complexity
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is 9(m−1)k [17]. The normalized encoding complexity of RDP and

EVENODD are 2− 2
m−1 and 2− 1

(m−1) [28] respectively.

Table 5.2: Normalized encoding complexity of MDS array codes.

MDS array codes Normalized encoding complexity

C(k, r,m) (k−1)(m−2)+((k−1)(m−1))r
k(m−1)

BBV rm2−rm−r−m+2
(m−1)m

Rabin-Like (r = 4) 9(m− 1)k

RDP (r = 2) 2− 2
m−1

EVENODD (r = 2) 2− 1
(m−1)
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Figure 5.1: The normalized encoding complexity.

The normalized encoding complexities of C(k, r,m), RDP,

EVENODD, BBV, Rabin-Like and CRS are summarized in Table

5.2 and Figure 5.1 for some fixed values of m. The results show that

the normalized encoding complexity of C(k, 2,m) is larger than that
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of RDP and EVENODD. The reason is that we need to compute the

parity-check bit for information columns from 1 to k − 1. When

r ≥ 4, the encoding complexity of the BBV code and C(k, 2,m) is

almost the same, where both of them are smaller than that of Rabin-

Like code.

Decoding Complexity

Without loss of generality, we assume that k ≥ r and suppose

there are r information erasures, we want to decode the k data

packets by reading the other k− r information columns and the first

r parity columns.

Theorem 10. In BASIC array code C(k, r,m), if there are r

information erasures and we employ Algorithm 1 to decode the

information bits of the r information erasures by reading the bits

in the remaining k columns, the decoding complexity is at most

(k − r)(m− 1)r + r(m− 2) +
7

4
r(r − 1)m.

Proof. First, we subtract the (k − r)(m− 1) information bits in the

information column from the redundant bits in r parity columns,

which takes (k− r)(m− 1)r XORs. Then, we add the parity-check

bit for the r parity columns to formulate r coded polynomials, which



www.manaraa.com

CHAPTER 5. DECODING METHOD OF BASIC ARRAY CODES 50

takes r(m−2) XORs. We can decode the r erasure data polynomials

by using Algorithm 1 to solve a r × r linear system, which takes at

most 7
4r(r − 1)m XORs by Theorem 9. Therefore, the decoding

complexity of C(k, r,m) is at most

(k − r)(m− 1)r + r(m− 2) +
7

4
r(r − 1)m.

It is shown in [47] that the computational complexity of

correcting r information erasures for BBV codes is

rm2 + 3.5r2m− 2.5rm− 2r2 + 2r.

However, we can first subtract the information bits from the redun-

dant bits in r parity columns, then solve the resulting r × r linear

system using Algorithm 1, and the decoding complexity of BBV

codes can be reduced to

r(m− r)(m− 1) +
5m− 9

2
(r2 − r).

So we will evaluate the decoding complexity of BBV codes by

employing Algorithm 1 in the following comparison. Table 5.3

summarizes the decoding complexity of r information erasures for

C(k, r,m) and BBV codes, r = 2, 3, 4, 5, 6, 7, 8.
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Table 5.3: Decoding complexity of BASIC array codes and BBV codes.

] of information erasures C(k, r,m) BBV codes

2 2km− 2k + 1.5m 2m2 −m− 5

3 3km− 3k + 4.5m+ 3 3m2 + 3m− 18

4 4km− 4k + 9m+ 8 4m2 + 10m− 32

5 5km− 5k + 15m+ 15 5m2 + 20m− 65

6 6km− 6k + 22.5m+ 24 6m2 + 33m− 99

7 7km− 7k + 31.5m+ 35 7m2 + 49m− 140

8 8km− 8k + 42m+ 48 8m2 + 68m− 188

For the case of two information columns failures, the decoding

complexity of C(k, r,m) is 2km− 2k + 1.5m, while the number of

XORs of computing the lost two information columns in RDP [28]

is 2(m − 1)(m − 2) and the reconstruction algorithm described in

the EVENODD paper [27] requires more XORs. The decoding

algorithms for two information erasures in the generalized EVEN-

ODD, such as STAR [32], Triple-Star [33] are the same as that in

EVENODD and the repairing algorithm of extension RDP [48] is

the same as RDP. For a fair comparison, we let k = m − 1 in

C(k, r,m). We can thus have the normalized decoding complexity

of the proposed C(k, r,m) and RDP are 2m2−2.5m+2
m2−2m+1 and 2(m−2)

m−1
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Figure 5.2: The normalized decoding complexity of r = 3, 4.

respectively, which are almost the same.

The normalized decoding complexity of the MDS array codes

shows in Figure 5.2 and Figure 5.3. Among MDS codes support-

ing three disk failures, Triple-Star code has the lowest decoding

complexity, and RS-Like code has the highest decoding complexity.

Compared to BBV codes, the proposed array codes is more efficient

in decoding when the parameter r is large, from Figure 5.2(a).

In the proposed codes C(k, r,m) with r ≥ 4, we let k =

m for fair comparison. For 4 simultaneous information failures,

the decoding complexity of Rabin-Like code, BBV code and the

proposed C(m, 4,m) are 9m2 +86m [17], 4m2 +62m−28 [47] and

4m2+16m+12 respectively. When r = 4, the proposed array codes

have slightly less decoding complexity of BBV codes, and Rabin-

Like code has lowest performance in terms of decoding complexity
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Figure 5.3: The normalized decoding complexity of r = 5, 6, 7, 8.

among three MDS array codes. From Figure 5.3(a) to Figure 5.3(d),

we have that the proposed array codes have an advantage in the

decoding process compared to BBV codes, and that this advantage

increases when r is large. For some cases of r = 8, the decoding

complexity of C(k, r,m) has roughly 9% reduction of BBV codes.

Therefore, we can conclude that if the number of parity columns r

is large, and if we want fast decoding, it is better to use the proposed

C(k, r,m).
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When r ≥ 4, the decoding complexity of the proposed array

codes is less than that of BBV code. The essential reason is

as follows. Recall that BBV code is constructed over the ring

F2[z]/h(z), while C(k, r,m) is Rm. First, in Rm, multiplication by

z can be interpreted as a cyclic shift, there is no XOR operation in

the multiplication. While in F2[z]/h(z), the multiplication of z and

a polynomial takes m − 2 XORs. Second, in Rm, there are at most

3(m−1)
2 XORs involved in solving s(z) from (1 + zb)s(z) = c(z).

While in F2[z]/h(z), solve the equation (1 + zb)s(z) = c(z) takes

2m− 5 XORs.

In conclusion, Triple-Star code has the most efficient decoding

algorithm among the compared 3-erasure MDS array codes. When

r ≥ 4, the proposed BASIC array codes C(k, r,m) has the lowest

decoding complexity in the compared MDS array codes.

5.2.3 Other Efficient Decoding Method

I want to mention that we can also employ the Lagrange

interpolation polynomial method [49] to solve the Vandermonde

system of BASIC array code. Both the Lagrange interpolation

polynomial method and the LU factorization method can reduce

the decoding complexity, compared to the traditional Cramer’s rule
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method. However, both the two methods are applicable only for

the information erasures. The differences of two methods are as

follows. First, the decoding complexity of BASIC array code

with Lagrange interpolation polynomial method is larger than that

with LU factorization method. Second, we can parallelly solve

the Vandermonde system with Lagrange interpolation polynomial

method, while we can not solve it parallelly for the LU factorization

method. I refer the readers to [49] on Lagrange interpolation

polynomial for more details.

5.3 Decoding Method for Four Parity Columns

In this section, we focus on r = 4 and consider decoding

method to recover one parity column and three information columns.

We assume the parameter m to be an odd number and m ≥ 5.

Suppose that three information columns f1, f2, f3 and one parity

column j are erased. We want to recover the lost data bits in columns

f1, f2, f3 by reading information columns i, for i ∈ A, and three

parity columns a, b, c ∈ B.

First, we add the parity-check bit for each of the k − 3

information columns and 3 parity columns, which takes k(m − 2)
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XORs. Then, we subtract the known values of si(z), for i ∈ A, from

c`(z), for ` = a, b, c.

If the failed parity column is the first parity column or the

last parity column, then can recover the the information failures by

first subtracting the remaining k − 3 information columns from the

other three parity columns, and then solving the 3× 3 Vandermonde

system by employing the LU method, which takes 10.5m XORs by

Theorem 9. At last, we re-encode the failed parity column. The

decoding complexity is upper bounded by

3m2 + 1.5m+ k(m− 2) + (k − 1)(m− 1).

In the following, we consider the case that the failed parity

column is the second parity column or the third parity column.

After subtracting the known k − 3 information columns from

three parity columns, we are sufficient to solve the following 3 × 3

linear equations
1 1 1

zaα zbα zcα

z3a z3b z3c



sa(z)

sb(z)

sc(z)

 =


p0(z)

pα(z)

p3(z)

 ,
where 0 ≤ a < b < c ≤ k − 1 and α = 1 or 2. The determinant of
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the above matrix is

(za + zb + zc)(za + zb)(za + zc)(zb + zc)

when α = 1, and

(za+b + za+c + zb+c)(za + zb)(za + zc)(zb + zc)

when α = 2.

By Cramer’s rule, we can compute sa(z) by

p0(z)(zbα+3c + zcα+3b) + pα(z)(z3c + z3b) + p3(z)(zbα + zcα)

f(z)(za + zb)(za + zc)(zb + zc)
,

where f(z) = za+zb+zc when α = 1 and f(z) = za+b+za+c+zb+c

when α = 2. So, the trick of solving sa(z) is how to compute the

inverse of f(z).

In general, we can compute the inverse of f(z) using the

extended Euclidean algorithm, as f(z) and 1+zm is relatively prime.

In the next, we show an efficient method of computing the inverse

of f(z) for some cases.

5.3.1 Complexity Reduction on Some Special Cases

For the three information failures f1, f2, f3, let a = f2 − f1,

b = f3 − f2 and we can write b ≡ ia mod m. We will give an
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efficient decoding method for i = 2, 3, 4, 5. We first consider the

case of i = 2.

Case of i = 2. The following lemma gives an efficient method

about how to compute the division c(z)
1+za+z2a over the ring Rm, for

c(z) ∈ Cm.

Lemma 11. Given the equation (1 + za + z2a)s(z) = c(z), where

0 < a ≤ m− 1 and s(z), c(z) ∈ Cm, we have

(1 + za)c(z) = (1 + z3a)s(z).

Proof. We have in the ringRm,

(1 + za)c(z) = (1 + za)(1 + za + z2a)s(z)

= (1 + z3a)s(z).

By combining Lemma 8 and Lemma 11, we can count that the

computation of solving s(z) takes 2.5m− 1.5 XORs at most.

Case of i = 3. The following lemma shows how to transform

the equation (1 + za + z3a)s(z) = c(z) to the form in Lemma 8.

Lemma 12. Given the equation (1 + za + z3a)s(z) = c(z), where

0 < a ≤ m− 1 and s(z), c(z) ∈ Cm, we can have

(1 + za + z2a + z4a)c(z) = (1 + z7a)s(z).
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Lemma 12 can be proved by multiplying both sides of the

equation (1 + za + z3a)s(z) = c(z) by (1 + za + z2a + z4a).

We can decode the polynomial s(z) from (1 + za + z3a)s(z) =

c(z) by combining Lemma 8 and Lemma 12.

For the cases of i = 4 and i = 5, we summarize the main

results as follows.

Lemma 13. Given the equation (1 + za + z4a)s(z) = c(z), where

0 < a ≤ m− 1 and s(z), c(z) ∈ Cm, we can have

(1 + za + z2a + z3a + z5a + z7a + z8a + z11a)c(z)

= (1 + z15a)s(z).

Lemma 13 can be proved by multiplying both sides of the

equation (1 + za + z4a)s(z) = c(z) by (1 + za + z2a + z3a + z5a +

z7a + z8a + z11a).

Lemma 14. Given the equation (1 + za + z5a)s(z) = c(z), where

0 < a ≤ m− 1 and s(z), c(z) ∈ Cm, we can have

(1 + za + z2a + z3a + z4a + z6a + z8a + z11a + z12a + z16a)c(z)

= (1 + z21a)s(z).
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Lemma 14 can be proved by multiplying both sides of the

equation (1 + za + z5a)s(z) = c(z) by (1 + za + z2a + z3a + z4a +

z6a + z8a + z11a + z12a + z16a).

2 End of chapter.
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Chapter 6

Functional Repair BASIC RGC

In the rest of this thesis, we consider BASIC regenerating

codes, which is defined as a class of BASIC codes such that the

parameters n, k, d, α, β achieve the optimal trade-off curve in (2.1)

asymptotically. We present a general construction of functional

repair BASIC regenerating codes in this chapter. Exact repair

BASIC regenerating codes will be given in the next chapter. First,

we review the general construction of functional repair regenerating

codes over a finite field.

6.1 Functional Repair RGC over Finite Field

Let B be the total file size measured in terms of the number

of symbols in a finite field F2w of size 2w. The data file is divided

61
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into chunks of B data symbols and stored across n nodes with each

node stores α coded symbols in F2w , such that the data file can be

recovered by connecting to any k nodes. Each coded symbol is a

linear combination of the B data symbols in F2w . The coefficients

of the linear combination form the global encoding vector of the

corresponding coded symbol.

In a repair process, a new node is created and replaces the

failure node by connecting to an arbitrary set of d of the remaining

nodes. The storage nodes which participate in the repair process

are also called the helpers. Each of the helper nodes transmits β

symbols to the new node, and each of these symbols is a linear

combination of the α symbols stored in the node. The coefficients of

the linear combination are called local encoding coefficients of the

corresponding symbol downloaded to repair the failure. The new

node will generate α new symbols, with each new symbol created

by doing a linear combination of the receiving dβ symbols. The

process is termed as the repair process and the total amount of dβ

of data downloaded in a repair process is called repair bandwidth.

Note that the α symbols stored in the new node need not be the same

as the failures, as long as the property that any k nodes are sufficient

in decoding the original file is maintained. We call this property the
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(n, k) recovery property.

A major result in the field of RGC is that the parameters of

a regenerating code must necessarily satisfy the inequality in (2.1).

The general construction of functional repair RGC over a finite field

that achieves the optimal trade-off in (2.1) is presented in [6] by Wu.

It is shown that the functional repair RGC can be constructed over

a finite field whose size is independent of how many failures/repairs

can happen. The proof is established in [6] by first formulating

the existence condition as a product of multivariate polynomials,

then showing each polynomial is non-zero, and finally applying the

Schwartz-Zippel lemma (see e.g. [50, p. 224])

Lemma 15 (Schwartz-Zippel). Let F be a finite field and S be a

subset of elements in F. Let f be a non-zero multivariate polynomial

in F[X1, X2, . . . , XN ] of degree e. Then the polynomial f has at

most e|S|N−1 roots in SN .

The key concept used in the repair process is the information

flow graph, which represents the evolution of information flow

as nodes join and leave. To ensure the (n, k) recovery property

after each repair, the author in [6] characterized a capacitated data

collector with a length-n characteristic vector h that indicates the

allowed access capacities from the storage nodes, here data collector
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corresponding to one request to reconstruct the original data. The

entry of h refers to the information that the data collector can get

from the storage node.

Given the values of system parameters n, k, d, α and β, let the

size of data file, B, be

B :=
k∑
i=1

min{(d− i+ 1)β, α}. (6.1)

For i = 1, 2, . . . , k, let si be the i-th term in the above summation in

(6.1),

si := min{(d− i+ 1)β, α},

and for i = k + 1, k + 2, . . . , n, let si = 0. Define H as the set

of vectors of length n, whose components are non-negative integers,

which are majorized by the vector s = (s1, s2, . . . , sn). In other

words, if we sort the components of a vector h ∈ Zn+ in non-

increasing order as h[1] ≥ h[2] ≥ · · · ≥ h[n], then h is in H if and

only if

µ∑
i=1

h[i]


≤
∑µ

i=1 si for µ = 1, 2, . . . , n− 1,

= B for µ = n.

We refer the readers to [51] for more details on majorization theory.

The existence proof assumes that any data collector with

characteristic h′ ∈ H can recover the original file before a failure,
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and shows that the (n, k) recovery property can be satisfied after

the repair. The main result in [6] is summarized in the following

theorem.

Theorem 16. Let F2w be a finite field whose size is greater than

B ·max
{(nα

B

)
, 2|H|

}
. (6.2)

Then, there exists a functional repair regenerating code defined in

F2w that achieves the optimal trade-off point in (2.1).

6.2 Functional Repair BASIC Regenerating Codes

In this section, we illustrate how to adapt the results in [6] to

functional repair BASIC regenerating code.

We assume that a data file contains B(m− 1) bits, for the ease

of presentation. In the encoding process, the data file is divided into

B groups. Each group of m− 1 bits is encoded to a codeword of the

binary parity-check code Cm. We let s1(z), s2(z), . . . , sB(z) ∈ Cm

be the resulting codewords. We call these B codewords the data

packets or source packets.

We store α coded packets in each node. Each coded packet

is an Rm-linear combination of the B data packets, with the

corresponding global encoding vector. When we choose the global
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encoding vectors, the (n, k) recovery property should be satisfied.

When a node fails, we connect to an arbitrary set of d helper nodes

of the remaining nodes and download β coded packets from each

helper node.

The repair process of functional repair BASIC RGC, which is

different from functional repair RGC over a finite field, is stated

as follows: each of the d helper nodes transmit β packets to the

new node, and each of these packets is an Rm-linear combination

of the α encoded packets in the memory. The local encoding

coefficients are polynomials in Rm. Upon receiving the dβ packets

from the helpers, the new node computes and stores α packets. Each

packet stored in the new node is an Rm-linear combination of the

dβ received packets, with coefficients being polynomials in Rm.

The computations required during the repair process are just cyclic

shifts and binary additions. The global encoding vectors of the new

packets are also computed and stored. We want to show that by

choosing the values of local encoding coefficients to be polynomials

inRm, we can maintain the (n, k) recovery property.

It can be proved by modifying the argument in [6] on the

existence of RGC over a finite field, and invoking a Schwartz-Zippel

lemma over a specific ring Cm.
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Let g(X1, X2, . . . , XN) be a non-zero multivariate polynomial

in Rm[X1, X2, . . . , XN ], with coefficients in the ring Rm. For ` ∈

{1, 2, . . . , N}, let r` ∈ Rm, we define theN -tuple (r1, r2, . . . , rN) as

Cm-root of the polynomial g(X1, X2, . . . , XN), if g(r1, r2, . . . , rN)

in the ringRm is not Cm-invertible.

Lemma 17 (Schwartz-Zippel lemma over the ring Cm). Suppose

that f1(z), f2(z), . . . , fL(z) are the irreducible factors of the check

polynomial h(z). Let S be a subset of Rm such that the function

θ` : S → F2[z]/f`(z), defined as

θ`(a(z)) := a(z) mod f`(z),

is injective ∀` = 1, 2, . . . , L, where a(z) can assume any value in

S. Then the polynomial g(X1, X2, . . . , XN) has at most L · e ·

|S|N−1 Cm-roots in SN , where e is the degree of the polynomial

g(X1, X2, . . . , XN).

Proof. See Appendix A.3.

In [6], the existence of RGC over a finite field is proved by

showing that we can choose the local encoding coefficient such

that a collection of determinants are all evaluated to be non-zero.

In the case of BASIC regenerating codes, we want to restrict

the local encoding coefficients to be polynomials in S, and the
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collection of determinants are evaluated to be non-zero in several

finite fields. Note that when we choose the polynomials for the

set S, the mapping θ` defined in Lemma 17 should be injective,

∀` = 1, 2, . . . , L. The cardinality of S thus can not exceed the size of

the smallest field in {F2(z)/f1(z),F2(z)/f2(z), · · · ,F2(z)/fL(z)},

i.e.,

|S| ≤ min(2deg(f1(z)), · · · , 2deg(fL(z))) ≤ 2
m−1
L . (6.3)

With these modification, the requirement on the cardinality of S is

stated in the next theorem.

Theorem 18. Let n, k, d, α and β be fixed system parameters

of a distributed storage system. Let m be an odd number, and

f1(z)f2(z) · · · fL(z) be the prime factorization of the check polyno-

mial h(z) over F2. If we can find a subset S of Rm such that (i) the

mapping θ` defined in Lemma 17 is injective, ∀` = 1, 2, . . . , L, and

(ii) if |S| is larger than

L ·B ·max
{(nα

B

)
, 2|H|

}
, (6.4)

then there exists a functional repair BASIC regenerating code, which

supports the file size

B =
k∑
i=1

min{(d− i+ 1)β, α},

with local encoding coefficients drawn from the subset S.
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Proof. See Appendix A.4.

Theorem 18 says that when the cardinality of S is larger than

(6.4), the proposed BASIC regenerating codes can achieve all the

points on the optimal trade-off curve between storage and repair

bandwidth asymptotically. Note that the coding scheme proposed

in this thesis has an additional 1 bit per m − 1 bits, and this leads

to a slight increase in storage and repair bandwidth by a factor of

m/(m−1), this is what “asymptotically” means. The key difference

of BASIC regenerating codes presented in this section and other

RGC in the literature is that, the packets in BASIC regenerating

codes assume value in Cm, and the local encoding coefficients are

polynomials in S.

We may choose the parameter m to be a prime number such

that the multiplicative order of 2 mod m is m − 1. In this case,

the polynomial 1 + zm is factorized as a product of two irreducible

polynomials, namely, 1 + z and the check polynomial h(z) = 1 +

z+· · ·+zm−1. Under the Artin’s conjecture on primitive roots, there

are infinitely many such prime number m [45]. In this case, we can

let the set S to be the polynomials inRm with non-zero coefficients

less than or equal to (m− 1)/2, and |S| = 2m−1. We can check that
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the function θ1 : S → F2(z)/h(z), defined as

θ1(a(z)) := a(z) mod h(z),

is injective, for any polynomial a(z) in S. The following Corollary

is a direct result of Theorem 18.

Corollary 19. Letm be a prime number such that the multiplication

order of 2 mod m is equal tom−1. There exists a functional repair

BASIC regenerating code for a file size

m− 1

m

k∑
i=1

min{(d− i+ 1)β, α},

if

m > log2

(
B ·max

{(nα
B

)
, 2|H|

})
+ 1. (6.5)

2 End of chapter.
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Chapter 7

Exact Repair BASIC RGC

In exact repair regenerating codes, a failed node is replaced

by a new node that stores exactly the same data as was stored in

the failed node. To construct exact repair RGC is more difficult

than to construct functional repair RGC, and all the constructions in

[8,19–22] for exact repair RGC have been focused on the MSR point

and MBR point. A general explicit construction of exact repair MBR

codes for all feasible values of n, k, d and exact repair MSR codes

for all n, k, d ≤ 2k − 2 is firstly presented in [19]. The construction

is of a product-matrix nature that is shown to significantly simplify

operation of the distributed storage network.

This chapter will starts from the product-matrix construction

of exact repair RGC, and then research the conversion of product

matrix RGC in [19] to product-matrix BASIC regenerating codes.

71
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7.1 Product-Matrix Regenerating Codes

As the product-matrix construction is based on a finite field,

throughout this subsection, we consider all symbols to belong to F2w

of size 2w. A regenerating code is represented by the product ΨM

of an n×d encoding matrix Ψ and an d×α message matrix M. The

entries of Ψ are elements of the finite field F2w and are independent

of the message symbols. The message matrix M is filled by the B

message symbols, with some submatrices of M being symmetric.

The i-th row of Ψ is referred to as the encoding vector ψi of node i.

For i = 1, 2, . . . , n, node i stores the i-th row of the product ΨM.

Let {`1, `2, . . . , `k} be the index set of k storage nodes that a

data collector connects to. The data collector can thus obtains kα

symbols in the product matrix ΨDCM, where ΨDC is the submatrix

of Ψ consisting of the k rows indexed by {`1, `2, . . . , `k}. We let Φk

be a submatrix of Ψ consisting by the first k columns. There is a

requirement that any k rows of Φk are independent when we choose

the value of the encoding matrix Ψ, to maintain the (n, k) recovery

property.

If we assume node f fails, a new node replacing the failed node

connects to an arbitrary subset {h1, . . . , hd} of d helper nodes. Each



www.manaraa.com

CHAPTER 7. EXACT REPAIR BASIC RGC 73

helper node sends the inner product of the α symbols stored in it

with the encoding vector ψf , to the new node. The new node will

thus receive the product matrix ΨrepairMψf , where Ψrepair is the

submatrix of Ψ consisting of the d rows {h1, . . . , hd}. From this

it turns out that we can recover the failed symbols exactly if the

matrix Ψrepair is invertible and the message matrix M satisfies some

properties.

7.2 BASIC Product-Matrix Regenerating Code

If we replace the symbol of product-matrix RGC over a finite

field by a codeword of binary parity-check code Cm, then the

corresponding codes are BASIC product-matrix regenerating codes.

In this section, we will convert the product-matrix RGC in [19] to

BASIC product-matrix regenerating codes.

Let u = [s1(z) s2(z) . . . sB(z)]T be a column vector of length

B containing the source packets. Each source packet is a codeword

of the binary parity-check code Cm, which contains m bits. The

entries of the encoding matrix Ψ are fixed polynomials in Rm and

independent of the source packets. The entries of M are the source

packets in Cm.
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7.2.1 BASIC Product-Matrix MSR Code

In the following, we construct the BASIC-PM (product-matrix)

MSR code for d = 2k − 2. As in [19], the construction can be

extended naturally to d ≥ 2k− 2, but we will only discuss the basic

case for

d = 2k − 2, α = k − 1, B = kα = k(k − 1).

Divide the data file into B parts, each of m − 1 bits, and generate

B source packets in Cm. Divide each of the B source packets into

two equal groups. For each group, create an (k − 1) × (k − 1)

symmetric matrix by filling the upper-triangular part of the matrix

by the k(k− 1)/2 source packets in the group, and obtain the lower-

triangular part by reflection. Let the symmetric matrix obtained from

group j be denoted by Sj, for j = 1, 2, and let M be the d× (k− 1)

matrix

M =

S1

S2

 .
Define the encoding matrix Ψ to be the n × d Vandermonde

matrix, with the i-th row defined as

ψt
i :=

[
1 zi−1 z2(i−1) · · · z(d−1)(i−1)

]
, (7.1)

for i = 1, 2, . . . , n. The i-th node stores α = k− 1 packets in ψt
iM.
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Let Φ be the n× α Vandermonde matrix such that the i-th row

is

φti :=

[
1 zi−1 z2(i−1) · · · z(α−1)(i−1)

]
, (7.2)

for i = 1, 2, . . . , n, and let Λ be the n × n diagonal matrix with

diagonal elements equal to 1, zα, . . . , zα(n−1). We have that Ψ =[
Φ ΛΦ

]
. There is a requirement when we choose the value of m

if we want to maintain the (n, k) recovery property that is both any

d rows of Ψ and any α rows of Φ are linear independent over Rm,

i.e., the determinants of any d× d submatrices of Ψ and any α × α

submatrices of Φ are Cm-invertible. The requirement can be met

by checking the condition of decodability given in Theorem 2 and

Corollary 3.

Lemma 20. Let Ψ be the encoding matrix, which is composed by

the encoding vector given in (7.1). If n − 1 is strictly less than all

divisors of m which are not equal to 1, then the determinants of

any d × d submatrices of Ψ and any ` × ` submatrices of Φ are

Cm-invertible, for 1 ≤ ` < α.

Proof. See Appendix A.5.

Ifm is a prime number andm ≥ n, then the determinant of any

d×d submatrix of Ψ is Cm-invertible according to the above lemma.
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For example of m = 7, n = 6 and d = 3, the determinant of any

3× 3 submatrix of Ψ can be written as (za + zb)(za + zc)(zb + zc),

where 0 ≤ a < b < c ≤ 5. The check polynomial 1 + z + · · · + z6

can be factorized into f1(z) = 1 + z + z3 and f2(z) = 1 + z2 + z3.

We can check that the polynomial 1 + z` is not divisible by f1(z)

and f2(z) for ` = 1, 2, 3, 4, 5.

The protocol of repairing a failed node is the same as in [19],

except that we are now working over Rm instead of a finite field.

The following two theorems summarize the exact repair and data

reconstruction properties of BASIC-PM MSR code.

Theorem 21. Suppose that the parameter m satisfies the require-

ment in Lemma 20 and suppose there is a failure node, we can repair

the α packets in the failure node by downloading one packet each

from any d = 2k − 2 of the remaining nodes

Proof. We assume that the node f fails and let ψt
f be the f -th row

of Ψ corresponding to the failure node. So the α packets in the node

f are ψt
fM. The new node which is created to replace the failure

node and connects to any d helper nodes h1, h2, . . . , hd. The helper

node hj computes a packet ψt
hj

Mφf and sends it to the new node.

The new node thus obtains d packets ΨrepairMφf from the d helper
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nodes, where

Ψrepair =



ψt
h1

ψt
h2

...

ψt
hd


.

By Lemma 20, the square matrix Ψrepair is Cm-invertible.

Therefore, the new node can computes d packets Mφf , i.e., S1φf

and S2φf . As S1 and S2 are symmetric matrices, the new node thus

can obtains φtfS1 and φtfS2. Then the new node can computes

φtfS1 + zα(f−1)φtfS2.

One can check that the above α packets are precisely the packets

stored in the failure node.

Theorem 22. In BASIC-PM MSR code, we can reconstruct all the

B source packets by connecting to any k nodes, if the parameter m

satisfies the requirement in Lemma 20.

Proof. For an arbitrary set {`i|i = 1, 2, . . . , k} of k nodes, we let

Ψk, Φk and Λk be the submatrix of Ψ, Φ and Λ with rows indexed

by {`i|i = 1, 2, . . . , k} respectively. We obtain the packets ΨkM =[
ΦkS1 + ΛkΦkS2

]
and then get[

ΦkS1Φ
t
k + ΛkΦkS2Φ

t
k

]
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by multiplying ΨkM and Φt
k. For notation simplicity, let the two

matrices P and Q to denote ΦkS1Φ
t
k and ΦkS2Φ

t
k respectively.

Note that the matrices P and Q are symmetric, as S1 and S2 are

symmetric.

In the following, I will show how to recover S1 and S2 from the

matrix P + ΛkQ. The i-th row and the j-th column entry of matrix

P + ΛkQ is

Pi,j + zα(`i−1)Qi,j, (7.3)

while the j-th row and the i-th column entry is

Pj,i + zα(`j−1)Qj,i = Pi,j + zα(`j−1)Qi,j, (7.4)

the above equation follows from the symmetry of P and Q. There-

fore, we can compute Pi,j and Qi,j for i 6= j.

Let’s first consider the matrix P . Up to now, all the non-

diagonal elements of P are known. The elements in the i-th row

(excluding the diagonal element) are given by

φt`iS1

[
φ`1 · · · φ`i−1

φ`i+1
· · · φ`α+1

]
.

We note that the matrix to the right is a Vandermonde matrix and we

can obtain φt`iS1 by Lemma 20.
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Therefore, we can compute
φt`1
...

φt`α

S1.

The matrix in the above is also a Vandermonde matrix and we can

recover S1 by Lemma 20. Similarly, we can recover the matrix S2

from the matrix Q.

7.2.2 BASIC Product-Matrix MBR Code

We divide the data file into

B =
k(k + 1)

2
+ k(d− k) (7.5)

parts, each of size m − 1 bits. Encode the B parts to the B source

packets by generating a codeword of Cm for each part. Each node

stores α = d coded packets. Create an d× d matrix

M :=

 S T

Tt 0

 .
The matrix S is a symmetric k × k matrix obtained by first

filling the upper-triangular part by source packets sj(z), for j =

1, 2, . . . , k(k + 1)/2, and then obtain the lower-triangular part by
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reflection along the diagonal. The rectangular matrix T has size

k × (d − k), and the entries in T are source packets sj(z), j =

k(k + 1)/2 + 1, . . . , B, listed in some fixed but arbitrary order. The

matrix Tt is the transpose of T and the matrix 0 is an (d−k)×(d−k)

all-zero matrix. For i = 1, 2, . . . , n, let the encoding vector of node

i be defined as in (7.1). Node i stores the d packets in ψt
iM.

Similar to the case of MSR code, we need to carefully choose

the value of m. If we want to maintain the (n, k) recovery property,

we need to make sure that the determinants of any d×d submatrices

of Ψ are Cm-invertible. The repair process and decoding process of

BASIC-PM MBR codes are presented in the following two theorems

respectively.

Theorem 23. Assume that the parameterm satisfies the requirement

in Lemma 20. Suppose node f fails, where f is a positive integer

ranges from 1 to n, we can repair the packets of node f by

downloading one packet from each of any d remaining nodes.

Proof. The d coded packets stored in the failed node f are ψt
fM.

The new node connects to an arbitrary set {hj|j = 1, 2, . . . , d} of

d helper nodes. Upon being contacted by the new node, the helper

node hj computes the inner productψt
hj

Mψf and sends the product

to the new node. The new node thus obtains the d coded packets
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ΨrepairMψf from the d helper nodes, where

Ψrepair =



ψt
h1

ψt
h2

...

ψt
hd


.

By construction, the matrix Ψrepair is a Vandermonde matrix and

the determinant is Cm-invertible by hypothesis. Thus, the new node

recovers Mψf through multiplication on the left by Ψ−1repair. Since

M is symmetric, we have (Mψf)
t = ψfM, and this is precisely the

data previously stored in the failed node.

Theorem 24. For the constructed BASIC-PM MBR codes with the

requirement in Lemma 20, we can reconstruct the B source packets

from any k nodes.

Proof. For any set of k nodes `1, `2, . . . , `k, we can solve for T from

ΦkT, where

Φk =



1 z`1−1 z2(`1−1) · · · z(k−1)(`1−1)

1 z`2−1 z2(`2−1) · · · z(k−1)(`2−1)

... ... ... . . . ...

1 z`k−1 z2(`k−1) · · · z(k−1)(`k−1)


is a Vandermonde matrix and invertible by Lemma 20. After

subtracting the source packets in T from the first k columns of
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ΨkM, where Ψk is the submatrix of Ψ with rows indexed by

{`i|i = 1, 2, . . . , k}, we obtain ΦkS and can solve all the sources

packets in S from ΦkS.

7.2.3 Example of BASIC Product-Matrix MBR Codes

In the following, we give an example for n = 5, k = 3, d = 4

and m = 11 of BASIC MBR code. This example contains all the

essential feature of BASIC-PM MBR code.

There are B = 9 source packets s1(z) to s9(z). The matrix

M =



s1(z) s2(z) s3(z) s7(z)

s2(z) s4(z) s5(z) s8(z)

s3(z) s5(z) s6(z) s9(z)

s7(z) s8(z) s9(z) 0


is a symmetric matrix with entries taken from F2[z]/(1 + z11). For

i = 1, 2, . . . , 5, the encoding vector of node i is

ψt
i =

[
1 zi−1 z2(i−1) z3(i−1)

]
. (7.6)

For i = 1, 2, . . . , 5, node i stores the four packets in the i-th
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row of ΨM, namely

s1(z) + zi−1s2(z) + z2(i−1)s3(z) + z3(i−1)s7(z),

s2(z) + zi−1s4(z) + z2(i−1)s5(z) + z3(i−1)s8(z),

s3(z) + zi−1s5(z) + z2(i−1)s6(z) + z3(i−1)s9(z),

s7(z) + zi−1s8(z) + z2(i−1)s9(z).

Each of the coded packets can be obtained by cyclic-right-shifting

and adding the source packets appropriately.

Suppose that a data collector connects to nodes 1, 2 and 3. We

can solve for s7(z), s8(z) and s9(z) from
s7(z) + s8(z) + s9(z)

s7(z) + zs8(z) + z2s9(z)

s7(z) + z2s8(z) + z4s9(z)

 =


1 1 1

1 z z2

1 z2 z4



s7(z)

s8(z)

s9(z)

 .
As the above encoding matrix is invertible by Lemma 20, we can

thus decode s1(z) to s6(z) from
1 1 1

1 z z2

1 z2 z4



s1(z) s2(z) s3(z)

s2(z) s4(z) s5(z)

s3(z) s5(z) s6(z)

 .
Suppose node 5 fails and we want to regenerate it from node

1, 2, 3 and 4. The coded packet sent from helper node i to the
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newcomer is ψt
iMψ5. If we put the packets received by the new

node as a column vector, then the column vector can be written as

1 1 1 1

1 z z2 z3

1 z2 z6 z8

1 z3 z6 z9


·M ·ψ5.

Since the matrix on the left is invertible by the result in Lemma 20,

we can compute M ·ψ5, as M is symmetric, this is exactly equal to

the content of the failed node.

The repair of other nodes can be done similarly. During the

repair process of a failed node, each of the helper nodes cyclic-

shifts the four packets in their memory according to the encoding

vector of the failure node, and then add the shifted version. Each bit

transmitted from the helping nodes is obtained by merely XORing

four bits.

Although we only give the conversion of the product-matrix

construction in [19], it is easy to check that we can convert all the

proposed exact repair RGC in [8, 19–23] to the exact repair BASIC

codes.

In the repair and decoding processes, although we show that

we can decode the packets by multiplying the inverse matrix and the
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received packets, we can employ a more efficient decoding method,

Algorithm 1, which is given in Section 5.2.1.

2 End of chapter.
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Chapter 8

Computational Complexity of

BASIC RGC

In this chapter, we evaluate computational complexity of BA-

SIC regenerating codes and RGC over a finite field, both for

functional repair and exact repair. In the following, we first present

the polynomial representation of finite field to give an accurate

complexity of RGC over a finite field. Then we demonstrate that

the coding and repair computational complexity of functional repair

BASIC codes is less than that of functional repair RGC over a finite

field. For exact repair BASIC-PM code, we show that the coding

and repair complexity is much less than that of RGC-PM code over

a finite field, by employing the Algorithm 1 given in Section 5.2.1.

86
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8.1 Polynomial Representation of Finite Field

We represent a finite field of size 2w as the quotient ring

F2[z]/(g(z)) for an irreducible polynomial g(z) of degreew, and use

a polynomial basis to represent a finite field element. Addition is bit-

wise XOR and multiplication in the field is multiplication modulo

the irreducible polynomial g(z). Generally, a multiplication in the

field F2w takes O(w2) bit operations. (See e.g. [52, Chp. 11].)

There is a wide range of multiplication methods whose effi-

ciency and level of sophistication increase with the size of operands.

The easiest field multiplication in current software implementation

is typically performed by using pre-calculated lookup tables for

the full multiplication result [53], which requires a table of size

2w × 2w × w bits. Therefore, this method is only suitable for small

field (w ≤ 8), due to the limitation of memory. Another approach

to perform a modular multiplication is to compute the product

first and then reduce it independently. This is especially effective

for large fields where it is worth using advanced multiplication

techniques, such as Karatsuba-Ofman algorithm [54, 55] and Fast

Fourier Transform (FFT) [56–58]. In the field F2w , the field

multiplication complexity may be improved to O(wlog2 3) using
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Karatsuba-Ofman algorithm [54]. The most efficient FFT algorithm

is proposed in [58], which has a multiplication complexity of

O(w log2w). Moreover, all the advanced multiplication techniques

are also suitable for the multiplication of the binary cyclic codes,

and the multiplication complexity of binary cyclic codes can al-

so reduced to O(mlog2 3) using Karatsuba-Ofman algorithm and

O(w log2w) by FFT algorithm in [58]. So, for fair comparison,

we implement the finite field multiplication by first computing the

product and then reducing the irreducible polynomial, do not employ

the advanced multiplication techniques.

In the following, we give an upper bound of XORs involved in

the multiplication over the finite field F2[z]/(g(z)), where g(z) is an

irreducible polynomial in F2[z] of degree w. Define the number of

non-zero terms of polynomial f(z) as the weight of f(z), which is

denoted as ‖f(z)‖0. For example, the weight of polynomial 1+z+z2

is 3, as it has three non-zero terms. In the multiplication of a(z)

and b(z) over F2[z]/(g(z)), we first compute the product of c(z) :=

a(z)b(z),

c(z) = a0b(z) + a1zb(z) + · · ·+ aw−1z
w−1b(z),

where c(z) =
∑2w−2

i=0 ciz
i. The product of a(z) and b(z) takes at
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most w2 XORs, as ‖a(z)‖0 ≤ w, ‖b(z)‖0 ≤ w. The average number

of XORs involved in the product is 0.5w2.

Then, we reduce the polynomial c(z) by g(z),

1. If deg c(z) ≥ w, let ` = deg c(z).

2. Remove the term c`z
` of c(z), and add c`(g(z) − zw)z`−w to

c(z),

c(z) =
`−1∑
i=0

ciz
i + (g(z)− zw)(c`z

`−w).

3. Repeat the above until deg c(z) < w.

After each iteration in the above, the degree of c(z) is decreased by

at least one and the degree of a(z)b(z) is at most 2w−2. So we need

to go through the iteration at most w− 1 times. In each iteration, we

need to replace the term and update the polynomial c(z), which takes

‖g(z)‖0 XORs. Therefore, we can count that the average number of

XORs of the field multiplication a(z)b(z) is at most

(0.5w + ‖g(z)‖0)w. (8.1)

In the ring Rm, we let a(z) ∈ Rm and b(z) ∈ Cm. The

multiplication a(z)b(z) is simply the convolutional product of the

coefficient vectors:

a(z)b(z) =
m−1∑
`=0

( ∑
i⊕mj=`

aibj

)
z`,
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where the symbol “⊕m” in the above stands for addition modulo m.

Recall that h(z) = 1 + z + · · · + zm−1 is the check polynomial

of Cm. For any polynomial a(z) in the ring Rm and ∀b(z) ∈ Cm,

we have that a(z)b(z) = (a(z) + h(z))b(z). If the number of non-

zero terms of a(z) is larger than (m − 1)/2, then we can compute

(a(z) + h(z))b(z) instead of a(z)b(z) and the number of non-zero

terms is less than or equal to (m− 1)/2. Therefore, we can assume

that ‖a(z)‖0 ≤ (m−1)/2 without loss of generality. The number of

XORs of multiplication a(z)b(z) inRm is thus at most (m−1)m/2.

Therefore, the computational complexity of one multiplication over

the ring Rm is much less than that of finite field multiplication, if

we let m − 1 = w. The essential reason is that the multiplication

a(z)b(z) overRm is a summing of at most (m− 1)/2 cyclic-shifted

versions of b(z), while the multiplication over finite field not only

need to compute (m− 1)/2 shifted versions of b(z) on average, but

also modulo the irreducible polynomial g(z).
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8.2 Computational Complexity of Functional Re-

pair BASIC RGC and RGC over Finite Field

For the purpose of easy presentation, we only consider the

MSR case, i.e., each set of k nodes contains just enough information

to decode the original data file. The equation in (6.1) holds with

B = kα when (d − i + 1)β ≥ α for all i = 1, 2, . . . , k. The

minimum value of β is thus β = α/(d−k+1) = B/(k(d−k+1)).

In the remainder of this section, the parameters B, α and β are set

to B = k(d − k + 1), α = d − k + 1 and β = 1. In the following,

we consider the parameter m to be a prime number such that the

multiplicative order of 2 mod m is m − 1 and the inequality (6.5)

holds with L = 1.

8.2.1 BASIC Regenerating Codes

Without loss of generality we assume that the data file contains

κB(m − 1) = κkα(m − 1) bits, where κ is a positive integer. For

the ease of comparison, we will normalize the complexity by the file

size.

Theorem 25. Let m be a prime number such that the multiplicative

order of 2 mod m is m − 1. In the repair process, the local
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encoding coefficients are restricted to be polynomials in Rm with

number of non-zero term less than or equal to (m − 1)/2. The

normalized encoding complexity, repair complexity and decoding

complexity of functional repair BASIC regenerating codes are at

most nαm2 , dβmk and Bm
2 respectively.

Proof. See Appendix A.6.

8.2.2 Regenerating Codes Over Finite Field

Table 8.1: Comparison of functional repair.

BASIC RGC RGC

Normalized redundancy m
m−1 ·

n
k

n
k

Normalized repair bandwidth m
m−1 ·

d
kα

d
kα

Normalized encoding complexity nαm
2

nα(0.5m+ ‖g(z)‖0)

Normalized repair complexity dβm
k

2dβ(0.5m+‖g(z)‖0)
k

Normalized decoding complexity kαm
2

kα(0.5m+ ‖g(z)‖0)

Consider functional repair RGC over the finite field F2w , where

w is an integer larger than

log2

(
B ·max

{(nα
B

)
, 2|H|

})
. (8.2)

As the upper bounds of m + 1 and w are the same from the

inequalities in (6.5) and (8.2), we can let m = w − 1, when we
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compare the computational complexity for RGC over a finite field

and BASIC regenerating codes. The coding and repair processes of

RGC over a finite field is similar to that of BASIC codes. The main

difference is that we replace the binary parity-check code by the field

element. The field element is viewed as a polynomial of degree at

most m− 1, and the coefficient is either 1 or 0.

Suppose that the data file containsB(m−1) bits without loss of

generality. In the encoding process, the file is divided into B source

packets, we need to generate nα coded packets. Each coded packet

is obtained by taking an F2m−1-linear combination of the B source

packets. The computation of such a linear combination is dominated

by B multiplications and B − 1 additions. One addition in the field

takes m − 1 XORs, and one multiplication takes (m − 1)(0.5(m −

1)+ ||g(z)||0) XORs at most by the equation (8.1). We can thus have

that one coded packet takesB(m−1)(0.5(m−1)+||g(z)||0)+(B−

1)(m − 1) XORs. The normalized encoding complexity is at most

κnαB(m−1)(0.5(m−1)+ ||g(z)||0)/(κB(m−1)) = nα(0.5(m−

1) + ||g(z)||0). Likewise, the repair and decoding complexity of

RGC over finite field can be computed.

The comparison of computational complexity is summarized in

Table 8.1. The first row is the performance metric of the proposed
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functional repair BASIC regenerating codes, and the second row

is the functional repair RGC using a finite field as alphabet. The

normalized redundancy is defined as the total number of bits in

the storage system divided by the number of bits in the data file.

As we are comparing at the MSR point, the storage efficiency is

nα/B = n/k for RGC over a finite field. The coding scheme

proposed in this thesis has an additional 1 bit per m − 1 bits, and

this leads to a slight increase in normalized redundancy by a factor

of m/(m − 1). Similarly, there is a factor of m/(m − 1) in the

normalized repair bandwidth of BASIC RGC. The storage efficiency

and normalized repair bandwidth of the two coding schemes are

approximately the same when m is large. The results of Table 8.1

show that the normalized computational complexity of RGC over a

finite field is lager than that of BASIC regenerating codes, for both

coding and repair processes.

In this subsection, we consider a class of special prime number

m such that the multiplicative order of 2 mod m is m− 1. For this

special prime m, the ring Cm is in fact isomorphic to a finite field

of size 2m−1. A method of fast multiplication in Rm is described

in [59], which shows that multiplication in Rm is approximately

twice as efficient as multiplication in F2m−1 with the polynomial
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basis representations.

In the above, we only consider the complexity of functional

repair BASIC regenerating codes of L = 1. If L > 1, let

f1(z)f2(z) · · · fL(z) be the prime factorization of the check poly-

nomial h(z) and deg(f1(z)) ≤ deg(f`(z)) ∀2 ≤ ` ≤ L. Let the set

S be equal to F2[z]/f1(z), we can check that the the function θ` is

injective ∀1 ≤ ` ≤ L. The weight of local encoding coefficient is

less than or equal to deg(f1(z)), and from Theorem 18, we have

deg(f1(z)) > log2

(
L ·B ·max

{(nα
B

)
, 2|H|

})
. (8.3)

Note that the repair complexity increases as the weight of the local

encoding coefficients increases, and the decoding complexity of

increases along with the increase ofm, wherem−1 ≥ L deg(f1(z)).

Then the repair complexity is much less than that of functional repair

RGC over a finite field, while the decoding complexity may be larger

than that of functional repair RGC over a finite field.

8.3 Computational Complexity of BASIC Product-

Matrix Codes

In this section, we estimate the computational complexity of

encoding, repair and decoding, in terms of the number of XORs
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for exact repair BASIC-PM codes and RGC-PM codes. Since the

derivations of the complexity of the BASIC-PM MSR and MBR are

similar, we will only consider the MBR case. Let m be a positive

odd number such that n − 1 is strictly less than all divisors of m

which are not equal to 1. The encoding vector of node i is[
1 zi−1 z2(i−1) · · · z(d−1)(i−1)

]
,

for i = 1, 2, . . . , n.

Theorem 26. Let m be a positive odd number such that n − 1

is strictly less than all divisors of m which are not equal to 1.

If we use Algorithm 1 to decode the linear systems in the repair

and decoding processes of BASIC-PM MBR code, the normalized

encoding complexity, repair complexity and decoding complexity of

BASIC-PM MBR codes are 2nα2

k(2d−k+1) ,
5.5d2

k(2d−k+1) and k(kd−k2+4.5d−3k)
(2d−k+1)

respectively.

Proof. See Appendix A.7.

Recall that the ν + 1 linear equations in Vandermonde matrix

form Vνx = b can be solved by employing Algorithm 1, which

takes ν(ν + 1) multiplications and ν(ν + 1) additions. For the ν + 1

linear equations Vνx = b over a finite field F2w , as the number

of XORs of a field multiplication is at most w(w + ‖g(z)‖0) from
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Table 8.2: Computational complexity of exact repair with algorithm 1.

BASIC-PM MBR RGC-PM MBR

Normalized encoding complexity 2nd2

k(2d−k+1)
2(w+‖g(z)‖0)nd2

k(2d−k+1)

Normalized repair complexity 5.5d2

k(2d−k+1)
4d2(w+‖g(z)‖0)
k(2d−k+1)

Normalized decoding complexity k(kd−k2+4.5d−3k)
(2d−k+1)

k(kd−k2+3d−2k)(w+‖g(z)‖0)
(2d−k+1)

(8.1), we can count that the computation of solving the ν + 1 linear

equations by Algorithm 1 is at most ν(ν + 1)w(w + ‖g(z)‖0 + 1)

XORs. If we replace the binary cyclic code Cm with the field element

in F2w , the computational complexity of RGC-PM MBR code with

Algorithm 1 can be calculated and is summarized in Table 8.2.

From Table 8.2, we can see that the encoding, repair and

decoding complexity normalized the file size of BASIC-PM MBR

code does not depend on the packet size m. The normalized

encoding complexity of RGC-PM MBR code over a finite field F2w

is (w + ‖g(z)‖0) times of that of BASIC-PM MBR code, and the

normalized repair/decoding complexities of RGC-PM MBR code

are roughly (w + ‖g(z)‖0) times of the normalized repair/decoding

complexities of BASIC-PM MBR code. In RGC-PM MBR code

over a finite field F2w , the parameters have to satisfy w > log2 n.

When the system parameter n is very large, the computational
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complexity of BASIC-PM MBR code is thus much less than that of

RGC-PM MBR code, for encoding, repair and decoding processes.

Consider the example of BASIC-PM MBR code given in

Subsection 7.2.3 with parameters n = 5, k = 3 and d = 4.

We can count that the normalized encoding complexity, normalized

decoding complexity and normalized repair complexity is roughly

8.9 XORs, 6 XORs and 4.9 XORs respectively. While for the same

parameters of RGC-PM MBR code with the same encoding matrix

over the finite field F23, the generater polynomial of the field F23

is 1 + z + z3. By Table 8.2, the normalized encoding complexity,

normalized decoding complexity and normalized repair complexity

is approximately equal to 44 XORs, 22.5 XORs and 17.8 XORs

respectively. We can see BASIC-PM MBR code has only 20%

encoding complexity, 26.7% decoding complexity and 27.5% repair

complexity of that of RGC-PM MBR code.

Table 8.3: Normalized computation of three operations inRm and field F2w .

Operation Rm F2w

a(z) + b(z) 1 1

Solve s(z) from zis(z) 0 w + ‖g(z)‖0

Solve s(z) from (zi + zj)s(z) 3(m−1)
2m

w + ‖g(z)‖0
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The normalized decoding complexity of BASIC-PM MBR

code is significantly less than that of RGC-PM MBR code, when

we employ Algorithm 1 for both of them. The essential reason

is as follows. By employing Algorithm 1, the decoding process

of both BASIC-PM MBR code and RGC-PM MBR code can be

partitioned to three operations: (1) compute the addition a(z)+b(z),

(2) solve the polynomial s(z) from zis(z), (3) solve the polynomial

s(z) from (zi + zj)s(z). All the operations of BASIC-PM MBR

code are over Rm, while the operations of RGC-PM MBR code are

the field F2w . Table 8.3 summarizes the normalized computation of

the three operations over Rm and the three operations over F2w . In

the Table 8.3, the normalized computation is the number of XORs

normalized the value m for Rm or normalized w for F2w . We

can efficiently decode the polynomial s(z) from zis(z) or from

(zi + zj)s(z) for 0 ≤ i, 6= j < m in BASIC-PM MBR code.

While the computational complexity of a finite field multiplication

and division is much higher in polynomial basis representation,

compared with the multiplication zis(z) and division c(z)/(zi + zj)

in the ringRm.

2 End of chapter.
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Chapter 9

Implementation

We implement the proposed BASIC codes, includes BASIC ar-

ray codes and BASIC-PM MBR codes, and evaluate their encoding,

decoding and repair performances in order to validate our theoretical

analysis.

In our implementation of BASIC codes, each bit or coefficient

of a polynomial in Cm corresponds to a chunk and we fix the chunk

size to be 4 KBytes, which is the default disk block size in existing

Linux extended file systems. The file in all the experiments is of

size 80 MBytes. The machine for testing has a 1GHz single-core

processor, 1GB of RAM and 20GB of Hard Disk. It runs CentOS

Linux, version 5.6 on VMware Workstation. Each data point in the

graphs that follow is the average of one thousand runs.

100
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9.1 BASIC Array Codes

The decoding performances of BASIC array codes are mea-

sured and compared to the publicly available implementation of

CRS codes, Jerasure 2.0 in [60]. We compare three decoding

algorithms: (i) the LU decoding algorithm in Algorithm 1 for four

information erasures, (ii) the Cramer’s rule method with extended

Euclidean Algorithm for three information and one parity erasures,

and (iii) the Cramer’s rule method with Lemma 11 for some cases

of three information and one parity erasures.
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Figure 9.1: The decoding time of BASIC array codes C(m, 4,m) and Cauchy

Reed-Solomon codes.

For BASIC array code, we let k = m. The results are shown

in Figure 9.1, where the parameter k varies from 5 to 37. In the

experiments of CRS codes, we also choose the chunk size to be 4
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KBytes, as like BASIC array codes. It is clear that the decoding

performances of all the three decoding algorithms of BASIC array

codes C(m, 3,m) outperform that of CRS code. Among the three

decoding algorithms of BASIC array codes, the LU method has the

best decoding performance, reduces the decoding time of the con-

ventional Cramer’s rule method with extended Euclidean Algorithm

roughly 20 percent. The Cramer’s rule method with Lemma 11 has

a slightly advantage of the conventional Cramer’s rule method with

extended Euclidean Algorithm in terms of decoding performance.

9.2 BASIC-PM MBR Codes

We implement BASIC-PM MBR codes and product-matrix

MBR codes over finite field to verify the advantage of BASIC-PM

MBR codes in terms of computation cost. Product-matrix MBR

codes over finite field in [19] are implemented using Jerasure 2.0

[60]. In order to reduce the computational cost of product-matrix

MBR codes, we choose the encoding matrix to be an n× d Cauchy

matrix. In our experiments of two codes, the parameters are fixed to

d = α = k, n = k + 3 and k ranges from 6 to 20. For BASIC-PM

MBR code, we choose value of the parameter m to be 23. It is easy
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to check that this value satisfies the requirement in Lemma 20 for

the given parameters.
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Figure 9.2: The encoding time of BASIC-PM MBR code and RGC-PM MBR

code.

We first evaluate the encoding performance, which is shown in

Figure 9.2. We observe that in both two codes, the encoding time

increases as the value of k increases, mainly because the normalized

encoding complexity increases as the parameter k increases. For all

the values of parameter k, the encoding time of BASIC-PM MBR

code is much less than that of RGC-PM MBR code.

We now evaluate the repair time. Figure 9.3 shows the repair

time when a single node fails. We observe that the repair time of

BASIC-PM MBR code is almost the same for different values of k,

as like the relation between the normalized repair complexity and
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Figure 9.3: The repair time of BASIC-PM MBR code and RGC-PM MBR code.

the parameter k. However, the repair time of RGC-PM MBR code

increases along with the parameter k increase, as the normalized

repair complexity is directly proportional to k. In general, the repair

time of RGC-PM MBR code is much larger than that of BASIC-

PM MBR code, and the difference becomes bigger when k becomes

bigger.

We now evaluate the decoding time for the two codes. Here

decoding time is the time of reconstructing the original data file from

any k storage nodes. Figure 9.4 shows the decoding time. Similar

to the encoding performance, the decoding time of both two codes

increases with the parameter k increases, as the normalized decoding

complexity increase along with the parameter k increase. BASIC-

PM MBR code can reduces the decoding time of RGC-PM MBR
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Figure 9.4: The decoding time of BASIC-PM MBR code and RGC-PM MBR

code.

code greatly for all the evaluated parameters.

2 End of chapter.
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Conclusion

In this thesis, we investigated the erasure codes of distributed

storage systems with the goal of designing low complexity storage

codes. Based on the insights of the existing methodology in reducing

computational complexity in network coding problems in [13–15],

we propose a framework of designing low-complexity linear codes

that employ XOR and bit-wise cyclic shifts called BASIC codes.

However, how to reduce the repair bandwidth of BASIC array codes

or how to determine the optimal repair bandwidth of BASIC array

codes is still an open problem, which I plan to continue researching

in the future.

2 End of chapter.

106



www.manaraa.com

Appendix A

Proofs

A.1 Proof of Theorem 6

Before giving the proof, we first need to investigate the deter-

minant of generalized Vandermonde matrix.

A generalized Vandermonde matrix is a square submatrix of

some Vandermonde matrix. We will need two types of generalized

Vandermonde matrix in this proof. For i = 1, 2, . . . , k and variables

a1, a2, . . . , ak, let

Vi(a) ,



1 a1 · · · ai−11 ai+1
1 · · · ak1

1 a2 · · · ai−12 ai+1
2 · · · ak2

... ... . . . ... ... . . . ...

1 ak · · · ai−1k ai+1
k · · · akk


.

107
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and for 1 ≤ i < j ≤ k + 1, let Vi,j(a) be the matrix

Vi,j(a) ,



1 · · · ai−11 ai+1
1 · · · aj−11 aj+1

1 · · · ak+1
1

1 · · · ai−12 ai+1
2 · · · aj−12 aj+1

2 · · · ak+1
2

... . . . ... ... . . . ... ... . . . ...

1 · · · ai−1k ai+1
k · · · aj−1k aj+1

k · · · ak+1
k


.

Note that when i = k and j = k + 1, Vi(a) and Vi,j(a)

reduce to the square Vandermonde matrix, and we denote the square

Vandermonde matrix as V(a).

Lemma 27. Let a denote the k-dimensional vector (a1, . . . , ak). For

i = 1, 2, . . . , k, we have

det Vi(a) = σk−i(a) det V(a),

and for 1 ≤ i < j ≤ k + 1,

det Vi,j(a) =

∣∣∣∣∣∣∣
σk−i(a) σk−j(a)

σk+1−i(a) σk+1−j(a)

∣∣∣∣∣∣∣ · det V(a),

where σ`(a) denotes the `-th elementary symmetric polynomials

σ`(a) ,
∑

1≤ji<j2<···<j`≤k

aj1aj2 · · · aj`.
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Proof. For det Vi(a), consider the following (k + 1) × (k + 1)

determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 a21 · · · ak1

1 a2 a22 · · · ak2
... ... ... . . . ...

1 ak a2k · · · akk

1 Z Z2 · · · Zk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= det V(a)

k∏
m=1

(Z − am)

as a polynomial with variable Z. By expanding the determi-

nant along the last row, we see that the coefficient of Z i is

σk−i(a) det V(a), for i = 0, 1, . . . , k. The first part of the theorem

follows from comparing the coefficients on both sides of the above

equation.

For the second part of the theorem, consider the following (k+

1)× (k + 1) determinant as a polynomial in Y and Z,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 a21 · · · ak+1
1

1 a2 a22 · · · ak+1
2

... ... ... . . . ...

1 ak a2k · · · ak+1
k

1 Y Y 2 · · · Y k+1

1 Z Z2 · · · Zk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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and note that the value of det Vi,j(a) is equal to

(−1)i+j+1(coeff. of ZjY i − coeff. of Z iY j).

After expanding and re-writing the determinant as

det(V(a)) · (Y k − Y k−1σ1(a) + · · ·+ (−1)kσk(a))

· (Zk − Zk−1σ1(a) + · · ·+ (−1)kσk(a)) · (Z − Y ),

we can express det Vi,j(a) in terms of det V(a) and the elementary

symmetric polynomials in a by comparing coefficients.

We are now ready to prove the theorem. In Theorem 4,

we state that if the determinant of any k × k submatrix of the

generator matrix G, after reduction modulo h(z), is a nonzero

polynomial in F2[z]/(h(z)), then the BASIC code C(k, r,m) is

MDS. In other words, the array code C(k, r,m) is MDS if, for all

` = 1, 2, . . . ,min{k, r}, the determinant of each `× ` submatrix of

the matrix P, regarded as a polynomial in F2[z], is not divisible by

1 + zm.

The determinant of an `×` sub-matrix of the P defined in (4.4)
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can be written as ∣∣∣∣∣∣∣∣∣∣∣∣∣

zi1j1 zi1j2 · · · zi1j`

zi2j1 zi2j2 · · · zi1j`

... ... . . . ...

zi`j1 zi`j2 · · · zi`j`

∣∣∣∣∣∣∣∣∣∣∣∣∣
with 0 ≤ i1 < · · · < i` ≤ k − 1 and 0 ≤ j1 < · · · < j` ≤ r − 1. By

factoring out powers of z, it is sufficient to show that a determinant

in the following form∣∣∣∣∣∣∣∣∣∣∣∣∣

1 zi1(j2−j1) · · · zi1(j`−j1)

1 zi2(j2−j1) · · · zi2(j`−j1)

... ... . . . ...

1 zi`(j2−j1) · · · zi`(j`−j1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.1)

is not divisible by 1 + zm in the polynomial ring F2[z]. We

distinguish seven cases. For ease of presentation, we assume r ≥ k

without loss of generality in the following discussion.

Case ` = 1. The determinant of size 1 × 1 in (A.1) is equal to

1, and hence cannot be divisible by 1 + zm.

Case ` = 2. The determinant in (A.1) is equal to zi2(j2−j1) +

zi1(j2−j1). It is divisible by 1 + zm if and only if

i2(j2 − j1) ≡ i1(j2 − j1) mod m. (A.2)
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Since j2 − j1 is strictly smaller than m and 0 ≤ i1 < i2 ≤ k − 1,

the condition in (A.2) implies that i1 = i2, which contradicts the fact

that i1 < i2.

Case ` = 3. Re-write the determinant in (A.1) as∣∣∣∣∣∣∣∣∣∣
1 zaα zaβ

1 zbα zbβ

1 zcα zcβ

∣∣∣∣∣∣∣∣∣∣
=zbα+cβ + zcα+bβ + zaα+cβ

+ zcα+aβ + zaα+bβ + zbα+aβ.

with 0 ≤ a < b < c ≤ k − 1 and 1 ≤ α < β ≤ r − 1. If we

view this determinant as a polynomial in F2[z], then the degree of

the polynomial is bα + cβ ≤ 2kr − 3k − 3r + 5, which is less than

m. Thus, the determinant in F2[z], is not divisible by 1 + zm.

Case ` = k − 2. The (k − 2)× (k − 2) determinant in (A.1) is

the determinant of a generalized Vandermonde matrix. Let z denote

the vector (zi1, zi2, . . . , zik−2) such that 0 ≤ i1 < i2 < · · · < ik−2 ≤

k − 1. The determinant is equal to either σi(z) · det V(z), with

0 ≤ i ≤ k − 3, or

(σk−3−i(z)σk−2−j(z)− σk−3−j(z)σk−2−i(z)) · det V(z)

with 1 ≤ i < j ≤ k − 3.

We first note that all irreducible factors of det V(z) have
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degrees strictly less thanm−1, since the values of i1, i2, . . . , ik−2 are

distinct and less than m, and the factors zi2 − zi1, zi3 − zi1, zi4 − zi1

etc. are divisible by 1 + z but not by 1 + zm. Hence det V(z)

is not divisible by 1 + zm, and it suffices to show that σi(z), for

0 ≤ i ≤ k − 3, and σk−3−i(z)σk−2−j(z) − σk−3−j(z)σk−2−i(z), for

1 ≤ i < j ≤ k − 3 are not divisible by 1 + zm.

Let σi(z) and

σk−3−i(z)σk−2−j(z)− σk−3−j(z)σk−2−i(z)

be polynomials in F2[z]. We have the maximum degree of the above

polynomials is (k + 3)(k − 4), which is less than m. Therefore, the

polynomials σi(z) for 0 ≤ i ≤ k − 3 and

σk−3−i(z)σk−2−j(z)− σk−3−j(z)σk−2−i(z)

for 1 ≤ i < j ≤ k − 3 are not divisible by 1 + zm.

Case ` = k−1. Let z denote the vector (zi1, zi2, . . . , zik−1). The

(k − 1)× (k − 1) determinant in (A.1) is equal to σi(z) · det V(z),

with 1 ≤ i ≤ k − 2.

It is sufficient to prove that σi(z) for 1 ≤ i ≤ k − 2 are not

divisible by 1 + zm. As the maximum degree of the polynomials

σi(z) is (k+1)(k−2)
2 < m, we have σi(z) is not divisible by 1 + zm.

Case ` = k. The k × k determinant in (A.1) is the determinant
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of a Vandermonde matrix. It cannot be divisible by 1 + zm as

i1, i2, . . . , ik are all less than m.

Case k−3 ≥ ` ≥ 4. Consider the other cases of k−3 ≥ ` ≥ 4.

The `× ` determinant in (A.1) is a polynomial over F2[z]. Note that

the polynomial h(z) is irreducible and thus is not divisible by any

polynomial over F2[z] with a degree larger than zero but smaller than

m−1. Therefore, if the maximum degree of the `×` determinant in

(A.1) is less than m − 1, the degree of h(z), then the square matrix

G` is non-singular over F2[z]/(h(z)). Therefore, the main problem

is to calculate the maximum degree of the `× ` determinant.

Note that the maximum degree of the (k − 3) × (k − 3)

determinant is always larger than the maximum degree of the ` × `

for k − 4 ≥ ` ≥ 4. Therefore in the following, we evaluate the

maximum degree of the (k − 3)× (k − 3) determinant.

The (k − 3)× (k − 3) determinant can be re-written as∣∣∣∣∣∣∣∣∣∣∣∣∣

1 zi1j1 · · · zi1jk−4

1 zi2j1 · · · zi2jk−4

... ... . . . ...

1 zik−3j1 · · · zik−3jk−4

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (A.3)

where 0 ≤ i1 < i2 < · · · < ik−3 ≤ k − 1 and 1 ≤ j1 < j2 < · · · <

jk−4 ≤ r − 1. In the following, we use induction to prove that the
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degree of polynomial in (A.3) is

Dmax = i2j1 + i3j2 + · · ·+ ik−3jk−4. (A.4)

Obviously, (A.4) holds if k = 5. In such case, the polynomial

in (A.3) is zi2j1 − zi1j1, so the degree is i2j1. We assume that for

k − 3 = N ≥ 2 the equation (A.4) holds. Now we prove that (A.4)

is true for k − 3 = N + 1.

By the Leibniz formula, the (k − 3) × (k − 3) determinant

is the sum of all possible products of elements in different rows and

columns. Now we show that the largest power of z for these products

is by the elements in the diagonal of the (k−3)×(k−3) matrix. For

the product that includes the element xiN+1+jN , the other elements

are from the first N row and the first N columns. Thus, the product

from the diagonal elements has the largest power, by the induction

assumption. Then, the product is calculated as zi2j1+i3j2+···+iN+1jN .

If a product does not include the element ziN+1+jN , it must

include another element in the final row (N + 1-th row). Without

loss of generality, we assume that it includes ziN+1+j`, for ` < N .

By removing the N + 1-th row and ` + 1-th column, we get an

N × N matrix. By the induction assumption, the product with the

largest power for this matrix is composed of its diagonal elements.
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Then the product including ziN+j` with the largest power is

zi2j1+i3j2+···+i`j`−1+i`+1j`+1+···+iN jN+iN+1j`.

Now we show that

i2j1+i3j2+· · ·+iN+1jN > i2j1+· · ·+i`j`−1+i`+1j`+1+· · ·+iNjN+iN+1j`.

This is equivalently to show i`+1(j`+1−j`)+i`+2(j`+2−j`+1)+· · ·+

iN(jN − jN−1) < iN+1(jN − j`). Since i`+1 < i`+2 < · · · < iN <

iN+1, and jN−j` = (jN−jN−1)+(jN−1−jN−2)+ · · ·+(j`+1−j`),

so the above inequality holds. Thus it is true for k − 3 = N + 1.

Hence, the product of diagonal elements of the (k − 3) × (k − 3)

determinant has the largest power.

Clearly, Dmax have the maximum if all i`+1 and j` have the

maximum values (` = 1, 2, · · · , k − 4). Thus, when ik−3 = k −

1, ik−4 = k−2, · · · , i2 = 4 and jk−4 = r−1, jk−5 = r−2, · · · , j1 =

r − k + 4, the maximum degree is achieved, which is

k−4∑
i=1

(k − i)(r − i) = (k − 4)(kr − (k − 3)(k + 3r + 7)

6
).

Similarly, the maximum degree of the determinant is

(r − 4)(kr − (r − 3)(3k + r + 7)

6
).

when k ≥ r.
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As

(min{k, r}−4)(kr+
(min{k, r} − 3)(min{k, r}+ 3 max{k, r}+ 7)

6
)

is no less than the value of 9k − 13, k2 − k − 12 and 1
2(k2 − k − 2),

for r ≥ 9 and k ≥ 5. From the above discussion, we have when

m− 1 is larger than

(min{k, r}−4)(kr+
(min{k, r} − 3)(min{k, r}+ 3 max{k, r}+ 7)

6
),

all the k×k submatrices Gk are non-singular over F2[z]/(h(z)). The

proposed MDS array code thus satisfies MDS property for r ≥ 9.

A.2 Proof of Theorem 9

As the determinant of matrix in (5.3) is Cm-invertible, we can

employ Algorithm 1 to decode the ν data polynomials of BASIC

codes. In the process of solving y`+1 from L
(`)
ν y`+1 = y` for

` = 1, 2, . . . , ν in Algorithm 1, we need to calculate ν(ν+1)
2 equations

like solving s(z) from (1 + zb)s(z) = c(z), and ν(ν+1)
2 additions.

So, the computation of solving y`+1 for ` = 1, 2, . . . , ν is no larger

than 5ν(ν+1)m
4 XORs by Lemma 8. In the process of solving y`

from U
(`)
ν y` = y`+1 in Algorithm 1, we can count that solving y`

for ` = ν, ν − 1, . . . , 1 takes ν(ν+1)
2 additions, i.e., ν(ν+1)m

2 XORs.
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Therefore, the total computation of Algorithm 1 with operations

overRm is at most 7
4ν(ν + 1)m XORs.

A.3 Proof of Lemma 17

Note that the ring Cm is isomorphic to F2(z)/h(z) with the

Chinese remainder theorem. Furthermore, the ring F2(z)/h(z) is

isomorphic to the direct sum of the finite fields F2(z)/f`(z), for

` = 1, 2, . . . , L. As θ` is injective, we have that the set

{θ`(a(z)) : a(z) ∈ S}

is a subset of the field F2(z)/f`(z) with cardinality |S|, ` =

1, 2, . . . , L.

For ` = 1, 2, . . . , L, let g`(X1, X2, . . . , XN) be the polynomial

of g(X1, X2, . . . , XN) with coefficients of g(X1, X2, . . . , XN) re-

duced modulo f`(z). Let < be the set of Cm-roots of the polynomial

g(X1, X2, . . . , XN) in SN and let <` be a subset of SN such that

g`(θ`(a1(z)), θ`(a2(z)), . . . , θ`(aN(z))) = 0

in the field F2[z]/f`(z), ∀(a1(z), a2(z), . . . , aN(z)) ∈ <` and ` =
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1, 2, . . . , L. We have

|<| = |<1

⋃
<2

⋃
· · ·
⋃
<L|

≤
L∑
`=1

|<`|

≤ L · e|S|N−1,

where in the last inequality, we use the result of Lemma 15.

A.4 Proof of Theorem 18

The proof is basically the same as in [6]. The encoding coef-

ficients in the global encoding vector when we initialize the storage

system are polynomials in Rm. The local encoding coefficients in

each repair process are chose from polynomials in the set S such

that a collection of sets of k packets are decodable. For each set of k

packets in this collection, we need to guarantee that the decodability

by invoking Theorem 1 in the previous section. In the application

of Lemma 17, the requirement about the set S, which is stated in

Lemma 17 should be satisfied.

In the proof of the existence of functional repair RGC over a

finite field in [6], the local encoding coefficients are chosen in the

field. They evaluate a set of polynomials to be non-zero over the
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finite field, and show that if the field size is larger than the value

given in (6.2), then there exists a regenerating code defined in the

field. For functional repair BASIC regenerating codes, we need to

evaluate the same set of polynomials to be non-zero simultaneously

over L fields rather than one field, and the local coefficients are

limited in the set S. Thus, the value of |S| should be greater than the

value in (6.4).

A.5 Proof of Lemma 20

Note that both the matrices Ψ and Φ are Vandermonde ma-

trices. Therefore, we only need to consider the case of the matrix

Ψ. Consider the matrix Ψ, for any d distinct rows indexed by

i1, i2, · · · , id between 1 to n, the corresponding encoding vectors

ψt
i1
,ψt

i2
, · · · ,ψt

id
form a non-singular d × d Vandermonde matrix.

So the determinant is ∏
j<`

(z`−1 + zj−1), (A.5)

where j, ` ∈ {i1, i2, · · · , id}.

Let f1(z)f2(z) · · · fL(z) be the prime factorization of the check

polynomial h(z) over F2. Suppose that the above determinant is Cm-

invertible, then by Theorem 2, zj−1 + z`−1 is a unit in F2[z]/fi(z),
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∀i ∈ {1, 2, · · · , L} and 1 ≤ j < ` ≤ n. This is equivalent to the

condition that 1 + za is a unit in F2[z]/fi(z), i.e., za is not congruent

to 1 mod fi(z), ∀i ∈ {1, 2, · · · , L} and 1 ≤ a ≤ n− 1. Note that

fi(z) is a factor of 1+ zm. If 1+ za is divisible by fi(z), then a must

be a divisor ofm. If n−1 is strictly less than all divisors ofm which

are not equal to 1, we thus have that 1 + za is not divisible by fi(z),

∀i ∈ {1, 2, · · · , L} and 1 ≤ a ≤ n− 1, and then the determinant in

(A.5) is Cm-invertible.

A.6 Proof of Theorem 25

Encode. To each piece of data, we first append the parity-

check bits after each m − 1 bits to obtain B codewords in Cm. The

calculation of the B parity-check bits in one piece of data requires

B(m−2) XOR operations. There are n storage nodes and each node

stores κα coded packets, with each coded packet being a Rm-linear

combination of the B source packets. The complexity of computing

one coded packet is directly proportional to the number of terms in

the coefficients, and in the worst case, there are (m − 1)/2 terms

in each of them (see the last paragraph of Subsection 8.1). The

computational complexity of calculating one coded packet is thus
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at most Bm(m − 1)/2 XOR operations. Hence, the total number

of XORs in encoding is κB(m − 2) + κnαBm(m − 1)/2. The

normalized computational complexity of encoding is (κB(m− 2) +

κnαBm(m− 1)/2)/(κB(m− 1)) ≈ nαm/2.

Repair. Each of the helping node generates κβ coded packets,

with each coded packet by aRm-linear combination of α packets in

its memory. As the local encoding coefficients are polynomials in

S, i.e., the polynomials with non-zero terms are less than or equal to

(m−1)/2. The total number of XORs in generating one packet to be

sent to the new node is at most αm(m−1)/2. The total number of bit

operations from the transmitting side is at most κdβαm(m− 1)/2.

The new node generates κα coded packets. Each of them

is obtained by combining the dβ received packets. The required

number of XORs is at most καdβm(m − 1)/2. The normalized

computational complexity of the repair of a failed node is at most

(καdβm(m− 1))/(κB(m− 1)) ≈ dβm
k .

Decode. A data collector recovers each piece of the data

file by linearly combining kα coded packets. The coefficients in

the linear combination are polynomial in Rm and are obtained by

solving some system of linear equations. We ignore the computa-

tional complexity in calculating these coefficients as it is negligible
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asymptotically when κ is large. The number of XOR’s in recovering

one source packet is therefore at most kαm(m − 1)/2. The

normalized computational complexity of decoding the data file is

at most (κBkαm(m− 1)/2)/(κB(m− 1)) = Bm
2 .

A.7 Proof of Theorem 26

Recall that we assume the data file contains B(m − 1) bits,

where B is given in (7.5). First, we generate B source packets by

encoding each group ofm−1 bits to a codeword of the binary cyclic

code Cm, which takes B(m − 2) XORs. Each node stores α = d

coded packets, where each coded packet is a linear combination of

α source packets. As the encoding coefficients are powers of z,

we have that each coded packet is computed by adding α shifted

versions of source packets, which takes αm XORs. Therefore,

the encoding complexity is B(m − 2) + nα2m and the encoding

complexity normalized by the file size is 2nα2

k(2d−k+1) .

In the repair process, each of the d helper nodes sends one

coded packet by adding the d shifted packets stored in the helper

node. The total number of XORs of adding the d packets in each

node is dm. The new node needs to compute a d × d linear system
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with the encoding matrix being a Vandermonde matrix, which can

be solved using the proposed Algorithm 1, with 7
4d(d − 1)m XORs

involved. The normalized repair complexity is d2m+3d(d−1)m
B(m−1) ≈

5.5d2

k(2d−k+1) .

Algorithm 2 Solving the source packets of S for BASIC-PM MBR codes
Input: The k × k symmetric matrix ΦkS, where Φk is a k × k Vandermonde

matrix and S is a k × k symmetric matrix.

1: for i = 1, 2, . . . , k − 1 do

2: Solve k − i+ 1 source packets in the ith column of ΦkS by Algorithm 1.

Subtract the first i known source packets from the first k− i coded packets

in the i+ 1-th column of ΦkS.

The decoding complexity is composed by three parts. First one

is the complexity of solving the packets in T, and we denote the

complexity as NT. The second part is the complexity of subtracting

the known packets of T from the other coded packets, which is

denoted as Nsub. The last one is the complexity of solving the

packets in S, and is denoted as NS.

For any k nodes `1, `2, . . . , `k, we can solve the (d − k)k

source packets in T by solving the d − k Vandermonde systems

with Algorithm 1. The complexity of the first part thus is NT =

7
4(d − k)k(k − 1)m. After subtracting the k(d − k) source packets

from the first k coded packets for each of the k nodes, and we obtain
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the k × k symmetric matrix ΦkS, where Φk is

Φk =



1 z`1−1 z2(`1−1) · · · z(k−1)(`1−1)

1 z`2−1 z2(`2−1) · · · z(k−1)(`2−1)

... ... ... . . . ...

1 z`k−1 z2(`k−1) · · · z(k−1)(`k−1)


.

Therefore Nsub = k2(d− k)(k + 1)m/2.

We can recursively solve the k × (k + 1)/2 source packets by

Algorithm 1, and the decoding logic is given in Algorithm 2. The

computational complexity of calculating the k × (k + 1)/2 source

packets in Algorithm 2 is

NS =
k−1∑
i=1

7

4
i(i+ 1)m+

k−1∑
i=1

i(k − i)m

=
1

8
(k − 1)k(2k − 1)m+

7

8
(k − 1)km+ (k − 1)k2m/2.

The normalized decoding complexity of BASIC-PM MBR codes is

NT +Nsub +NS

B(m− 1)

≈ k(kd− k2 + 4.5d− 3k)

(2d− k + 1)
.

2 End of chapter.
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